ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.03014
  4. Cited By
A Variational Information Bottleneck Approach to Multi-Omics Data
  Integration

A Variational Information Bottleneck Approach to Multi-Omics Data Integration

5 February 2021
Changhee Lee
M. Schaar
    DRL
ArXivPDFHTML

Papers citing "A Variational Information Bottleneck Approach to Multi-Omics Data Integration"

15 / 15 papers shown
Title
A systematic review of challenges and proposed solutions in modeling multimodal data
A systematic review of challenges and proposed solutions in modeling multimodal data
Maryam Farhadizadeh
Maria Weymann
Michael Blaß
Johann Kraus
Christopher Gundler
Sebastian Walter
Noah Hempen
Harald Binde
Nadine Binder
57
0
0
11 May 2025
Multi-View Factorizing and Disentangling: A Novel Framework for Incomplete Multi-View Multi-Label Classification
Multi-View Factorizing and Disentangling: A Novel Framework for Incomplete Multi-View Multi-Label Classification
Wulin Xie
Lian Zhao
Jiang Long
Xiaohuan Lu
Bingyan Nie
79
0
0
28 Jan 2025
Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses
Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses
Eslam Abdelaleem
I. Nemenman
K. M. Martini
58
6
0
05 Oct 2023
Learning Robust Representations via Multi-View Information Bottleneck
Learning Robust Representations via Multi-View Information Bottleneck
Marco Federici
Anjan Dutta
Patrick Forré
Nate Kushman
Zeynep Akata
SLR
50
256
0
17 Feb 2020
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
67
270
0
08 Nov 2019
Deep Multi-View Learning using Neuron-Wise Correlation-Maximizing
  Regularizers
Deep Multi-View Learning using Neuron-Wise Correlation-Maximizing Regularizers
Kui Jia
Jiehong Lin
Mingkui Tan
Dacheng Tao
3DV
41
32
0
25 Apr 2019
Learning Factorized Multimodal Representations
Learning Factorized Multimodal Representations
Yao-Hung Hubert Tsai
Paul Pu Liang
Amir Zadeh
Louis-Philippe Morency
Ruslan Salakhutdinov
DRL
98
407
0
16 Jun 2018
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Multimodal Generative Models for Scalable Weakly-Supervised Learning
Mike Wu
Noah D. Goodman
DRL
70
380
0
14 Feb 2018
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
88
476
0
05 Jun 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
A Survey of Multi-View Representation Learning
A Survey of Multi-View Representation Learning
Yingming Li
Ming Yang
Zhongfei Zhang
AI4TS
3DV
251
512
0
03 Oct 2016
On Deep Multi-View Representation Learning: Objectives and Optimization
On Deep Multi-View Representation Learning: Objectives and Optimization
Weiran Wang
R. Arora
Karen Livescu
J. Bilmes
SSL
DRL
64
913
0
02 Feb 2016
Structured Matrix Completion with Applications to Genomic Data
  Integration
Structured Matrix Completion with Applications to Genomic Data Integration
Tianxi Cai
T. Tony Cai
Anru R. Zhang
55
74
0
08 Apr 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Generalized Product of Experts for Automatic and Principled Fusion of
  Gaussian Process Predictions
Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
Yanshuai Cao
David J. Fleet
41
186
0
28 Oct 2014
1