Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.02171
Cited By
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
3 February 2021
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Outlier-Robust Learning of Ising Models Under Dobrushin's Condition"
31 / 31 papers shown
Title
Robustly Learning Mixtures of
k
k
k
Arbitrary Gaussians
Ainesh Bakshi
Ilias Diakonikolas
Hengrui Jia
D. Kane
Pravesh Kothari
Santosh Vempala
49
64
0
03 Dec 2020
Near-Optimal Learning of Tree-Structured Distributions by Chow-Liu
Arnab Bhattacharyya
Sutanu Gayen
Eric Price
N. V. Vinodchandran
40
23
0
09 Nov 2020
Settling the Robust Learnability of Mixtures of Gaussians
Allen Liu
Ankur Moitra
57
41
0
06 Nov 2020
Sample-Optimal and Efficient Learning of Tree Ising models
C. Daskalakis
Qinxuan Pan
40
7
0
28 Oct 2020
Robust Estimation of Tree Structured Ising Models
A. Katiyar
Vatsal Shah
Constantine Caramanis
TPM
40
10
0
10 Jun 2020
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
55
45
0
13 May 2020
Outlier-Robust Clustering of Non-Spherical Mixtures
Ainesh Bakshi
Pravesh Kothari
60
31
0
06 May 2020
Learning Ising models from one or multiple samples
Y. Dagan
C. Daskalakis
Nishanth Dikkala
Anthimos Vardis Kandiros
33
10
0
20 Apr 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
39
41
0
19 Nov 2019
Recent Advances in Algorithmic High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
OOD
53
182
0
14 Nov 2019
Faster Algorithms for High-Dimensional Robust Covariance Estimation
Yu Cheng
Ilias Diakonikolas
Rong Ge
David P. Woodruff
47
66
0
11 Jun 2019
Learning Ising Models with Independent Failures
Surbhi Goel
D. Kane
Adam R. Klivans
37
16
0
13 Feb 2019
Spectral Signatures in Backdoor Attacks
Brandon Tran
Jerry Li
Aleksander Madry
AAML
85
784
0
01 Nov 2018
Moving Beyond Sub-Gaussianity in High-Dimensional Statistics: Applications in Covariance Estimation and Linear Regression
Arun K. Kuchibhotla
Abhishek Chakrabortty
56
108
0
08 Apr 2018
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
57
289
0
07 Mar 2018
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
57
221
0
19 Feb 2018
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
77
147
0
20 Nov 2017
Concentration of Multilinear Functions of the Ising Model with Applications to Network Data
C. Daskalakis
Nishanth Dikkala
Gautam Kamath
43
23
0
11 Oct 2017
Learning Graphical Models Using Multiplicative Weights
Adam R. Klivans
Raghu Meka
53
113
0
20 Jun 2017
Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications
Linus Hamilton
Frederic Koehler
Ankur Moitra
47
64
0
31 May 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
61
138
0
15 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
69
254
0
02 Mar 2017
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
57
46
0
23 Jun 2016
Agnostic Estimation of Mean and Covariance
Kevin A. Lai
Anup B. Rao
Santosh Vempala
79
344
0
24 Apr 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
66
510
0
21 Apr 2016
Structure learning of antiferromagnetic Ising models
Guy Bresler
D. Gamarnik
Devavrat Shah
80
43
0
03 Dec 2014
Efficiently learning Ising models on arbitrary graphs
Guy Bresler
65
203
0
22 Nov 2014
Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses
Po-Ling Loh
Martin J. Wainwright
74
180
0
03 Dec 2012
Information-theoretic limits of selecting binary graphical models in high dimensions
N. Santhanam
Martin J. Wainwright
130
204
0
16 May 2009
High-Dimensional Graphical Model Selection Using
ℓ
1
\ell_1
ℓ
1
-Regularized Logistic Regression
Pradeep Ravikumar
Martin J. Wainwright
John D. Lafferty
270
177
0
26 Apr 2008
Reconstruction of Markov Random Fields from Samples: Some Easy Observations and Algorithms
Guy Bresler
Elchanan Mossel
Allan Sly
93
159
0
10 Dec 2007
1