Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.10562
Cited By
Investigating the significance of adversarial attacks and their relation to interpretability for radar-based human activity recognition systems
26 January 2021
Utku Ozbulak
Baptist Vandersmissen
A. Jalalvand
Ivo Couckuyt
Arnout Van Messem
W. D. Neve
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Investigating the significance of adversarial attacks and their relation to interpretability for radar-based human activity recognition systems"
22 / 22 papers shown
Title
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
76
313
0
14 Feb 2020
On the Connection Between Adversarial Robustness and Saliency Map Interpretability
Christian Etmann
Sebastian Lunz
Peter Maass
Carola-Bibiane Schönlieb
AAML
FAtt
58
162
0
10 May 2019
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
84
397
0
30 May 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
224
3,186
0
01 Feb 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
76
1,094
0
27 Dec 2017
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Kensho Hara
Hirokatsu Kataoka
Y. Satoh
3DPC
126
1,934
0
27 Nov 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
147
682
0
26 Nov 2017
Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors
Yu Zhao
Rennong Yang
Guillaume Chevalier
Maoguo Gong
BDL
HAI
59
313
0
22 Aug 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
157
2,153
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
307
12,069
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
123
1,857
0
20 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
201
3,873
0
10 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
514
10,330
0
16 Nov 2016
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
136
2,527
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
540
5,897
0
08 Jul 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,701
0
10 Jun 2016
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
250
9,319
0
14 Dec 2015
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
312
7,295
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,882
0
12 Nov 2013
Speech Recognition with Deep Recurrent Neural Networks
Alex Graves
Abdel-rahman Mohamed
Geoffrey E. Hinton
226
8,517
0
22 Mar 2013
1