ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.07685
  4. Cited By
GLocalX -- From Local to Global Explanations of Black Box AI Models

GLocalX -- From Local to Global Explanations of Black Box AI Models

19 January 2021
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
ArXivPDFHTML

Papers citing "GLocalX -- From Local to Global Explanations of Black Box AI Models"

15 / 15 papers shown
Title
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
Alexander Koebler
Ingo Thon
Florian Buettner
37
0
0
26 Mar 2025
ExplainReduce: Summarising local explanations via proxies
ExplainReduce: Summarising local explanations via proxies
Lauri Seppäläinen
Mudong Guo
Kai Puolamäki
FAtt
52
0
0
17 Feb 2025
On the Complexity of Global Necessary Reasons to Explain Classification
On the Complexity of Global Necessary Reasons to Explain Classification
M. Calautti
Enrico Malizia
Cristian Molinaro
FAtt
63
0
0
12 Jan 2025
Axiomatic Characterisations of Sample-based Explainers
Axiomatic Characterisations of Sample-based Explainers
Leila Amgoud
Martin Cooper
Salim Debbaoui
FAtt
33
1
0
09 Aug 2024
Logical Distillation of Graph Neural Networks
Logical Distillation of Graph Neural Networks
Alexander Pluska
Pascal Welke
Thomas Gärtner
Sagar Malhotra
28
0
0
11 Jun 2024
Explaining Predictions by Characteristic Rules
Explaining Predictions by Characteristic Rules
Amr Alkhatib
Henrik Bostrom
Michalis Vazirgiannis
27
5
0
31 May 2024
Glocal Explanations of Expected Goal Models in Soccer
Glocal Explanations of Expected Goal Models in Soccer
Mustafa Cavus
Adrian Stando
P. Biecek
35
4
0
29 Aug 2023
A User Study on Explainable Online Reinforcement Learning for Adaptive
  Systems
A User Study on Explainable Online Reinforcement Learning for Adaptive Systems
Andreas Metzger
Jan Laufer
Felix Feit
Klaus Pohl
OffRL
OnRL
24
1
0
09 Jul 2023
Reason to explain: Interactive contrastive explanations (REASONX)
Reason to explain: Interactive contrastive explanations (REASONX)
Laura State
Salvatore Ruggieri
Franco Turini
LRM
30
1
0
29 May 2023
A $k$-additive Choquet integral-based approach to approximate the SHAP
  values for local interpretability in machine learning
A kkk-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning
G. D. Pelegrina
L. Duarte
M. Grabisch
FAtt
TDI
35
27
0
03 Nov 2022
Leveraging Explanations in Interactive Machine Learning: An Overview
Leveraging Explanations in Interactive Machine Learning: An Overview
Stefano Teso
Öznur Alkan
Wolfgang Stammer
Elizabeth M. Daly
XAI
FAtt
LRM
26
62
0
29 Jul 2022
Towards Explainable Evaluation Metrics for Natural Language Generation
Towards Explainable Evaluation Metrics for Natural Language Generation
Christoph Leiter
Piyawat Lertvittayakumjorn
M. Fomicheva
Wei-Ye Zhao
Yang Gao
Steffen Eger
AAML
ELM
24
20
0
21 Mar 2022
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Alon Jacovi
Jasmijn Bastings
Sebastian Gehrmann
Yoav Goldberg
Katja Filippova
36
15
0
27 Jan 2022
Model Learning with Personalized Interpretability Estimation (ML-PIE)
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
24
29
0
13 Apr 2021
Learning Certifiably Optimal Rule Lists for Categorical Data
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
60
195
0
06 Apr 2017
1