ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.07046
  4. Cited By
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models

Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models

18 January 2021
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
ArXivPDFHTML

Papers citing "Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models"

44 / 44 papers shown
Title
Bounding Evidence and Estimating Log-Likelihood in VAE
Bounding Evidence and Estimating Log-Likelihood in VAE
Lukasz Struski
Marcin Mazur
Pawel Batorski
Przemysław Spurek
Jacek Tabor
56
3
0
19 Jun 2022
Learning to Fly via Deep Model-Based Reinforcement Learning
Learning to Fly via Deep Model-Based Reinforcement Learning
Philip Becker-Ehmck
Maximilian Karl
Jan Peters
Patrick van der Smagt
SSL
103
37
0
19 Mar 2020
Variational Tracking and Prediction with Generative Disentangled
  State-Space Models
Variational Tracking and Prediction with Generative Disentangled State-Space Models
A. Akhundov
Maximilian Soelch
Justin Bayer
Patrick van der Smagt
BDL
DRL
38
3
0
14 Oct 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a
  Latent Variable Model
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
80
380
0
01 Jul 2019
Note on the bias and variance of variational inference
Note on the bias and variance of variational inference
Chin-Wei Huang
Aaron Courville
28
5
0
09 Jun 2019
Switching Linear Dynamics for Variational Bayes Filtering
Switching Linear Dynamics for Variational Bayes Filtering
Philip Becker-Ehmck
Jan Peters
Patrick van der Smagt
BDL
55
46
0
29 May 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEs
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDL
CML
DRL
35
100
0
13 May 2019
Re-examination of the Role of Latent Variables in Sequence Modeling
Re-examination of the Role of Latent Variables in Sequence Modeling
Zihang Dai
Guokun Lai
Yiming Yang
Shinjae Yoo
BDL
DRL
38
4
0
04 Feb 2019
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
88
1,436
0
12 Nov 2018
The Blackbird Dataset: A large-scale dataset for UAV perception in
  aggressive flight
The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight
Amado Antonini
Winter Guerra
Varun Murali
Thomas Sayre-McCord
S. Karaman
33
54
0
03 Oct 2018
Learning to Decompose and Disentangle Representations for Video
  Prediction
Learning to Decompose and Disentangle Representations for Video Prediction
Jun-Ting Hsieh
Bingbin Liu
De-An Huang
Li Fei-Fei
Juan Carlos Niebles
DRL
177
306
0
11 Jun 2018
Temporal Difference Variational Auto-Encoder
Temporal Difference Variational Auto-Encoder
Karol Gregor
George Papamakarios
F. Besse
Lars Buesing
Theophane Weber
DRL
61
127
0
08 Jun 2018
Variational Autoencoder with Arbitrary Conditioning
Variational Autoencoder with Arbitrary Conditioning
Oleg Ivanov
Michael Figurnov
Dmitry Vetrov
BDL
DRL
55
147
0
06 Jun 2018
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects
Adam R. Kosiorek
Hyunjik Kim
Ingmar Posner
Yee Whye Teh
BDL
80
258
0
05 Jun 2018
Approximate Bayesian inference in spatial environments
Approximate Bayesian inference in spatial environments
Atanas Mirchev
Baris Kayalibay
Maximilian Soelch
Patrick van der Smagt
Justin Bayer
BDL
100
22
0
18 May 2018
Stochastic Video Generation with a Learned Prior
Stochastic Video Generation with a Learned Prior
Emily L. Denton
Rob Fergus
VGen
83
526
0
21 Feb 2018
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning
  Framework for Network-Scale Traffic Learning and Forecasting
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Zhiyong Cui
Kristian C. Henrickson
Ruimin Ke
Ziyuan Pu
Yinhai Wang
GNN
AI4TS
104
749
0
20 Feb 2018
Learning and Querying Fast Generative Models for Reinforcement Learning
Learning and Querying Fast Generative Models for Reinforcement Learning
Lars Buesing
T. Weber
S. Racanière
S. M. Ali Eslami
Danilo Jimenez Rezende
...
Fabio Viola
F. Besse
Karol Gregor
Demis Hassabis
Daan Wierstra
OffRL
69
135
0
08 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRL
BDL
125
283
0
10 Jan 2018
Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for
  Network-wide Traffic Speed Prediction
Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction
Zhiyong Cui
Ruimin Ke
Ziyuan Pu
Yinhai Wang
AI4TS
37
415
0
07 Jan 2018
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
67
283
0
16 Oct 2017
Unsupervised Real-Time Control through Variational Empowerment
Unsupervised Real-Time Control through Variational Empowerment
Maximilian Karl
Maximilian Soelch
Philip Becker-Ehmck
Djalel Benbouzid
Patrick van der Smagt
Justin Bayer
59
55
0
13 Oct 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
232
210
0
25 May 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
113
529
0
17 Jan 2017
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
86
457
0
30 Sep 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
242
10,686
0
15 Sep 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
214
5,076
0
05 Jun 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
112
398
0
24 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
49
375
0
20 May 2016
Variational Inference for On-line Anomaly Detection in High-Dimensional
  Time Series
Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series
Maximilian Sölch
Justin Bayer
Marvin Ludersdorfer
Patrick van der Smagt
AI4TS
BDL
55
81
0
23 Feb 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
157
290
0
22 Feb 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
91
262
0
06 Feb 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
81
160
0
23 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
70
373
0
16 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
268
1,245
0
01 Sep 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
84
1,259
0
07 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
310
4,179
0
21 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Variational Recurrent Auto-Encoders
Variational Recurrent Auto-Encoders
Otto Fabius
Joost R. van Amersfoort
GAN
BDL
DRL
86
248
0
20 Dec 2014
Learning Stochastic Recurrent Networks
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
66
274
0
27 Nov 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
134
1,166
0
31 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
252
2,621
0
29 Jun 2012
Rényi Divergence and Kullback-Leibler Divergence
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
79
1,339
0
12 Jun 2012
1