Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.06639
Cited By
Removing Undesirable Feature Contributions Using Out-of-Distribution Data
17 January 2021
Saehyung Lee
Changhwa Park
Hyungyu Lee
Jihun Yi
Jonghyun Lee
Sungroh Yoon
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Removing Undesirable Feature Contributions Using Out-of-Distribution Data"
39 / 39 papers shown
Title
Understanding and Mitigating Miscalibration in Prompt Tuning for Vision-Language Models
Shuoyuan Wang
Yixuan Li
Hongxin Wei
VLM
99
2
0
03 Oct 2024
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
152
102
0
20 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
193
115
0
05 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Hold me tight! Influence of discriminative features on deep network boundaries
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
32
50
0
15 Feb 2020
What it Thinks is Important is Important: Robustness Transfers through Input Gradients
Alvin Chan
Yi Tay
Yew-Soon Ong
AAML
OOD
43
51
0
11 Dec 2019
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
75
987
0
29 Nov 2019
Self-training with Noisy Student improves ImageNet classification
Qizhe Xie
Minh-Thang Luong
Eduard H. Hovy
Quoc V. Le
NoLa
288
2,387
0
11 Nov 2019
Learning De-biased Representations with Biased Representations
Hyojin Bahng
Sanghyuk Chun
Sangdoo Yun
Jaegul Choo
Seong Joon Oh
OOD
372
279
0
07 Oct 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
84
488
0
03 Jul 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
119
751
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
68
333
0
31 May 2019
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
Haohan Wang
Xindi Wu
Pengcheng Yin
Eric Xing
57
521
0
28 May 2019
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
Fahad Shahbaz Khan
Fatih Porikli
AAML
78
145
0
28 May 2019
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
75
130
0
24 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
604
4,766
0
13 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
87
1,836
0
06 May 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
67
726
0
28 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
127
2,542
0
24 Jan 2019
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
151
557
0
13 Dec 2018
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
165
1,475
0
11 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
96
2,662
0
29 Nov 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
93
1,776
0
30 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
131
789
0
30 Apr 2018
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
95
628
0
16 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
189
3,180
0
01 Feb 2018
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
64
355
0
06 Dec 2017
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
113
881
0
26 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
271
9,743
0
25 Oct 2017
VisDA: The Visual Domain Adaptation Challenge
Xingchao Peng
Ben Usman
Neela Kaushik
Judy Hoffman
Dequan Wang
Kate Saenko
OOD
81
800
0
18 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
271
12,029
0
19 Jun 2017
Good Semi-supervised Learning that Requires a Bad GAN
Zihang Dai
Zhilin Yang
Fan Yang
William W. Cohen
Ruslan Salakhutdinov
GAN
45
483
0
27 May 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
316
4,624
0
10 Nov 2016
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
130
2,525
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
228
8,548
0
16 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
314
7,971
0
23 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
332
10,172
0
16 Mar 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
235
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
241
14,893
1
21 Dec 2013
1