Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2101.05467
Cited By
Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model
14 January 2021
Qizhou Wang
Bo Han
Tongliang Liu
Gang Niu
Jian Yang
Chen Gong
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model"
5 / 5 papers shown
Title
Dynamics-Aware Loss for Learning with Label Noise
Xiu-Chuan Li
Xiaobo Xia
Fei Zhu
Tongliang Liu
Xu-Yao Zhang
Cheng-Lin Liu
NoLa
AI4CE
35
6
0
21 Mar 2023
Multi-class Label Noise Learning via Loss Decomposition and Centroid Estimation
Yongliang Ding
Tao Zhou
Chuang Zhang
Yijing Luo
Juan Tang
Chen Gong
NoLa
32
4
0
21 Mar 2022
Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels
Pengfei Chen
Junjie Ye
Guangyong Chen
Jingwei Zhao
Pheng-Ann Heng
NoLa
103
34
0
08 Dec 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
37
104
0
11 Jan 2020
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
1