ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.04898
  4. Cited By
Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples: Making Personal Data Unexploitable

13 January 2021
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
    MIACV
ArXivPDFHTML

Papers citing "Unlearnable Examples: Making Personal Data Unexploitable"

37 / 137 papers shown
Title
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Sizhe Chen
Geng Yuan
Xinwen Cheng
Yifan Gong
Minghai Qin
Yanzhi Wang
X. Huang
AAML
28
20
0
22 Nov 2022
UPTON: Preventing Authorship Leakage from Public Text Release via Data
  Poisoning
UPTON: Preventing Authorship Leakage from Public Text Release via Data Poisoning
Ziyao Wang
Thai Le
Dongwon Lee
33
1
0
17 Nov 2022
Generative Poisoning Using Random Discriminators
Generative Poisoning Using Random Discriminators
Dirren van Vlijmen
A. Kolmus
Zhuoran Liu
Zhengyu Zhao
Martha Larson
23
2
0
02 Nov 2022
Transferable Unlearnable Examples
Transferable Unlearnable Examples
J. Ren
Han Xu
Yuxuan Wan
Xingjun Ma
Lichao Sun
Jiliang Tang
36
36
0
18 Oct 2022
Data Isotopes for Data Provenance in DNNs
Data Isotopes for Data Provenance in DNNs
Emily Wenger
Xiuyu Li
Ben Y. Zhao
Vitaly Shmatikov
20
12
0
29 Aug 2022
Hierarchical Perceptual Noise Injection for Social Media Fingerprint
  Privacy Protection
Hierarchical Perceptual Noise Injection for Social Media Fingerprint Privacy Protection
Simin Li
Huangxinxin Xu
Jiakai Wang
Aishan Liu
Fazhi He
Xianglong Liu
Dacheng Tao
AAML
21
5
0
23 Aug 2022
Autoregressive Perturbations for Data Poisoning
Autoregressive Perturbations for Data Poisoning
Pedro Sandoval-Segura
Vasu Singla
Jonas Geiping
Micah Goldblum
Tom Goldstein
David Jacobs
AAML
25
40
0
08 Jun 2022
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
Shutong Wu
Sizhe Chen
Cihang Xie
X. Huang
AAML
45
27
0
24 May 2022
Indiscriminate Data Poisoning Attacks on Neural Networks
Indiscriminate Data Poisoning Attacks on Neural Networks
Yiwei Lu
Gautam Kamath
Yaoliang Yu
AAML
43
24
0
19 Apr 2022
Poisons that are learned faster are more effective
Poisons that are learned faster are more effective
Pedro Sandoval-Segura
Vasu Singla
Liam H. Fowl
Jonas Geiping
Micah Goldblum
David Jacobs
Tom Goldstein
6
17
0
19 Apr 2022
Robust Unlearnable Examples: Protecting Data Against Adversarial
  Learning
Robust Unlearnable Examples: Protecting Data Against Adversarial Learning
Shaopeng Fu
Fengxiang He
Yang Liu
Li Shen
Dacheng Tao
19
24
0
28 Mar 2022
Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review
Deep Learning Serves Traffic Safety Analysis: A Forward-looking Review
Abolfazl Razi
Xiwen Chen
Huayu Li
Hao Wang
Brendan J. Russo
Yan Chen
Hongbin Yu
27
39
0
07 Mar 2022
Efficient Attribute Unlearning: Towards Selective Removal of Input
  Attributes from Feature Representations
Efficient Attribute Unlearning: Towards Selective Removal of Input Attributes from Feature Representations
Tao Guo
Song Guo
Jiewei Zhang
Wenchao Xu
Junxiao Wang
MU
27
17
0
27 Feb 2022
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Hao He
Kaiwen Zha
Dina Katabi
AAML
34
32
0
22 Feb 2022
Learnability Lock: Authorized Learnability Control Through Adversarial
  Invertible Transformations
Learnability Lock: Authorized Learnability Control Through Adversarial Invertible Transformations
Weiqi Peng
Jinghui Chen
AAML
16
5
0
03 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
81
16
0
31 Jan 2022
Certifying Model Accuracy under Distribution Shifts
Certifying Model Accuracy under Distribution Shifts
Aounon Kumar
Alexander Levine
Tom Goldstein
S. Feizi
OOD
27
7
0
28 Jan 2022
Execute Order 66: Targeted Data Poisoning for Reinforcement Learning
Execute Order 66: Targeted Data Poisoning for Reinforcement Learning
Harrison Foley
Liam H. Fowl
Tom Goldstein
Gavin Taylor
AAML
17
9
0
03 Jan 2022
On the Convergence and Robustness of Adversarial Training
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Amicable Aid: Perturbing Images to Improve Classification Performance
Amicable Aid: Perturbing Images to Improve Classification Performance
Juyeop Kim
Jun-Ho Choi
Soobeom Jang
Jong-Seok Lee
AAML
13
2
0
09 Dec 2021
SoK: Anti-Facial Recognition Technology
SoK: Anti-Facial Recognition Technology
Emily Wenger
Shawn Shan
Haitao Zheng
Ben Y. Zhao
PICV
32
13
0
08 Dec 2021
Going Grayscale: The Road to Understanding and Improving Unlearnable
  Examples
Going Grayscale: The Road to Understanding and Improving Unlearnable Examples
Zhuoran Liu
Zhengyu Zhao
A. Kolmus
Tijn Berns
Twan van Laarhoven
Tom Heskes
Martha Larson
AAML
37
6
0
25 Nov 2021
Fooling Adversarial Training with Inducing Noise
Fooling Adversarial Training with Inducing Noise
Zhirui Wang
Yifei Wang
Yisen Wang
17
14
0
19 Nov 2021
Fast Yet Effective Machine Unlearning
Fast Yet Effective Machine Unlearning
Ayush K Tarun
Vikram S Chundawat
Murari Mandal
Mohan S. Kankanhalli
MU
31
171
0
17 Nov 2021
Availability Attacks Create Shortcuts
Availability Attacks Create Shortcuts
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
AAML
31
57
0
01 Nov 2021
Robust Contrastive Learning Using Negative Samples with Diminished
  Semantics
Robust Contrastive Learning Using Negative Samples with Diminished Semantics
Songwei Ge
Shlok Kumar Mishra
Haohan Wang
Chun-Liang Li
David Jacobs
SSL
24
71
0
27 Oct 2021
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Neil G. Marchant
Benjamin I. P. Rubinstein
Scott Alfeld
MU
AAML
20
69
0
17 Sep 2021
Trustworthy AI: A Computational Perspective
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
196
0
12 Jul 2021
Adversarial Examples Make Strong Poisons
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
23
132
0
21 Jun 2021
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
  Trained from Scratch
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch
Hossein Souri
Liam H. Fowl
Ramalingam Chellappa
Micah Goldblum
Tom Goldstein
SILM
31
123
0
16 Jun 2021
Disrupting Model Training with Adversarial Shortcuts
Disrupting Model Training with Adversarial Shortcuts
Ivan Evtimov
Ian Covert
Aditya Kusupati
Tadayoshi Kohno
AAML
20
10
0
12 Jun 2021
Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial
  Training
Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training
Lue Tao
Lei Feng
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
31
71
0
09 Feb 2021
With False Friends Like These, Who Can Notice Mistakes?
With False Friends Like These, Who Can Notice Mistakes?
Lue Tao
Lei Feng
Jinfeng Yi
Songcan Chen
AAML
13
5
0
29 Dec 2020
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
  and Defenses
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
Micah Goldblum
Dimitris Tsipras
Chulin Xie
Xinyun Chen
Avi Schwarzschild
D. Song
A. Madry
Bo-wen Li
Tom Goldstein
SILM
18
270
0
18 Dec 2020
Adversarial Camouflage: Hiding Physical-World Attacks with Natural
  Styles
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles
Ranjie Duan
Xingjun Ma
Yisen Wang
James Bailey
•. A. K. Qin
Yun Yang
AAML
167
224
0
08 Mar 2020
Clean-Label Backdoor Attacks on Video Recognition Models
Clean-Label Backdoor Attacks on Video Recognition Models
Shihao Zhao
Xingjun Ma
Xiang Zheng
James Bailey
Jingjing Chen
Yu-Gang Jiang
AAML
196
274
0
06 Mar 2020
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
Previous
123