ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09717
28
1

UPTON: Preventing Authorship Leakage from Public Text Release via Data Poisoning

17 November 2022
Ziyao Wang
Thai Le
Dongwon Lee
ArXivPDFHTML
Abstract

Consider a scenario where an author-e.g., activist, whistle-blower, with many public writings wishes to write "anonymously" when attackers may have already built an authorship attribution (AA) model based off of public writings including those of the author. To enable her wish, we ask a question "Can one make the publicly released writings, T, unattributable so that AA models trained on T cannot attribute its authorship well?" Toward this question, we present a novel solution, UPTON, that exploits black-box data poisoning methods to weaken the authorship features in training samples and make released texts unlearnable. It is different from previous obfuscation works-e.g., adversarial attacks that modify test samples or backdoor works that only change the model outputs when triggering words occur. Using four authorship datasets (IMDb10, IMDb64, Enron, and WJO), we present empirical validation where UPTON successfully downgrades the accuracy of AA models to the impractical level (~35%) while keeping texts still readable (semantic similarity>0.9). UPTON remains effective to AA models that are already trained on available clean writings of authors.

View on arXiv
Comments on this paper