ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2101.04526
  4. Cited By
Measuring Recommender System Effects with Simulated Users

Measuring Recommender System Effects with Simulated Users

12 January 2021
Sirui Yao
Yoni Halpern
Nithum Thain
Xuezhi Wang
Kang Lee
Flavien Prost
Ed H. Chi
Jilin Chen
Alex Beutel
ArXivPDFHTML

Papers citing "Measuring Recommender System Effects with Simulated Users"

8 / 8 papers shown
Title
Simulating News Recommendation Ecosystem for Fun and Profit
Simulating News Recommendation Ecosystem for Fun and Profit
Guangping Zhang
Dongsheng Li
Hansu Gu
T. Lu
Li Shang
Ning Gu
16
0
0
23 May 2023
Manifestations of Xenophobia in AI Systems
Manifestations of Xenophobia in AI Systems
Nenad Tomašev
J. L. Maynard
Iason Gabriel
24
9
0
15 Dec 2022
Understanding or Manipulation: Rethinking Online Performance Gains of
  Modern Recommender Systems
Understanding or Manipulation: Rethinking Online Performance Gains of Modern Recommender Systems
Zhengbang Zhu
Rongjun Qin
Junjie Huang
Xinyi Dai
Yang Yu
Yong Yu
Weinan Zhang
39
2
0
11 Oct 2022
From Ranked Lists to Carousels: A Carousel Click Model
From Ranked Lists to Carousels: A Carousel Click Model
Behnam Rahdari
B. Kveton
Peter Brusilovsky
CML
LRM
21
4
0
27 Sep 2022
Preference Dynamics Under Personalized Recommendations
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
72
34
0
25 May 2022
Recency Dropout for Recurrent Recommender Systems
Recency Dropout for Recurrent Recommender Systems
Bo-Yu Chang
Can Xu
Matt Le
Jingchen Feng
Ya Le
Sriraj Badam
Ed H. Chi
Minmin Chen
17
3
0
26 Jan 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender
  Ecosystems
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
Martin Mladenov
Chih-Wei Hsu
Vihan Jain
Eugene Ie
Christopher Colby
Nicolas Mayoraz
H. Pham
Dustin Tran
Ivan Vendrov
Craig Boutilier
BDL
13
31
0
14 Mar 2021
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
312
0
30 Oct 2017
1