ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.11016
17
3

Recency Dropout for Recurrent Recommender Systems

26 January 2022
Bo-Yu Chang
Can Xu
Matt Le
Jingchen Feng
Ya Le
Sriraj Badam
Ed H. Chi
Minmin Chen
ArXivPDFHTML
Abstract

Recurrent recommender systems have been successful in capturing the temporal dynamics in users' activity trajectories. However, recurrent neural networks (RNNs) are known to have difficulty learning long-term dependencies. As a consequence, RNN-based recommender systems tend to overly focus on short-term user interests. This is referred to as the recency bias, which could negatively affect the long-term user experience as well as the health of the ecosystem. In this paper, we introduce the recency dropout technique, a simple yet effective data augmentation technique to alleviate the recency bias in recurrent recommender systems. We demonstrate the effectiveness of recency dropout in various experimental settings including a simulation study, offline experiments, as well as live experiments on a large-scale industrial recommendation platform.

View on arXiv
Comments on this paper