ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14905
  4. Cited By
Meta Learning Backpropagation And Improving It

Meta Learning Backpropagation And Improving It

29 December 2020
Louis Kirsch
Jürgen Schmidhuber
ArXivPDFHTML

Papers citing "Meta Learning Backpropagation And Improving It"

43 / 43 papers shown
Title
Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots
Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots
Binggwong Leung
Worasuchad Haomachai
J. Pedersen
S. Risi
Poramate Manoonpong
OODD
71
0
0
16 Mar 2025
Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
Maxence Faldor
Robert Tjarko Lange
Antoine Cully
71
0
0
04 Feb 2025
JaxLife: An Open-Ended Agentic Simulator
JaxLife: An Open-Ended Agentic Simulator
Chris Xiaoxuan Lu
Michael Beukman
Michael T. Matthews
Jakob Foerster
LM&Ro
35
2
0
01 Sep 2024
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Yu Sun
Xinhao Li
Karan Dalal
Jiarui Xu
Arjun Vikram
...
Xinlei Chen
Xiaolong Wang
Sanmi Koyejo
Tatsunori Hashimoto
Carlos Guestrin
58
93
0
05 Jul 2024
Benchmarking General-Purpose In-Context Learning
Benchmarking General-Purpose In-Context Learning
Fan Wang
Chuan Lin
Yang Cao
Yu Kang
30
1
0
27 May 2024
FFCL: Forward-Forward Net with Cortical Loops, Training and Inference on
  Edge Without Backpropagation
FFCL: Forward-Forward Net with Cortical Loops, Training and Inference on Edge Without Backpropagation
Ali Karkehabadi
Houman Homayoun
Avesta Sasan
24
9
0
21 May 2024
Structurally Flexible Neural Networks: Evolving the Building Blocks for
  General Agents
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents
J. Pedersen
Erwan Plantec
Eleni Nisioti
Milton L. Montero
Sebastian Risi
36
1
0
06 Apr 2024
Language Agents as Optimizable Graphs
Language Agents as Optimizable Graphs
Mingchen Zhuge
Wenyi Wang
Louis Kirsch
Francesco Faccio
Dmitrii Khizbullin
Jürgen Schmidhuber
LLMAG
29
19
0
26 Feb 2024
Discovering Temporally-Aware Reinforcement Learning Algorithms
Discovering Temporally-Aware Reinforcement Learning Algorithms
Matthew Jackson
Chris Xiaoxuan Lu
Louis Kirsch
R. T. Lange
Shimon Whiteson
Jakob N. Foerster
19
18
0
08 Feb 2024
Universal Neural Functionals
Universal Neural Functionals
Allan Zhou
Chelsea Finn
James Harrison
27
12
0
07 Feb 2024
Are LSTMs Good Few-Shot Learners?
Are LSTMs Good Few-Shot Learners?
Mike Huisman
Thomas M. Moerland
Aske Plaat
Jan N. van Rijn
VLM
16
7
0
22 Oct 2023
Learning to (Learn at Test Time)
Learning to (Learn at Test Time)
Yu Sun
Xinhao Li
Karan Dalal
Chloe Hsu
Oluwasanmi Koyejo
Carlos Guestrin
Xiaolong Wang
Tatsunori Hashimoto
Xinlei Chen
SSL
30
6
0
20 Oct 2023
The Languini Kitchen: Enabling Language Modelling Research at Different
  Scales of Compute
The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute
Aleksandar Stanić
Dylan R. Ashley
Oleg Serikov
Louis Kirsch
Francesco Faccio
Jürgen Schmidhuber
Thomas Hofmann
Imanol Schlag
MoE
38
9
0
20 Sep 2023
Understanding Catastrophic Forgetting in Language Models via Implicit
  Inference
Understanding Catastrophic Forgetting in Language Models via Implicit Inference
Suhas Kotha
Jacob Mitchell Springer
Aditi Raghunathan
CLL
28
58
0
18 Sep 2023
Extending the Forward Forward Algorithm
Extending the Forward Forward Algorithm
Saumya Gandhi
Ritu Gala
Jonah Kornberg
Advaith Sridhar
25
6
0
09 Jul 2023
Brain-inspired learning in artificial neural networks: a review
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason Eshraghian
28
52
0
18 May 2023
Meta-Learned Models of Cognition
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
A. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
28
24
0
12 Apr 2023
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
  Optimization
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Chris Xiaoxuan Lu
Tom Zahavy
Valentin Dalibard
Sebastian Flennerhag
24
34
0
08 Apr 2023
Learning Functional Transduction
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
30
2
0
01 Feb 2023
Transformers as Algorithms: Generalization and Stability in In-context
  Learning
Transformers as Algorithms: Generalization and Stability in In-context Learning
Yingcong Li
M. E. Ildiz
Dimitris Papailiopoulos
Samet Oymak
18
152
0
17 Jan 2023
Eliminating Meta Optimization Through Self-Referential Meta Learning
Eliminating Meta Optimization Through Self-Referential Meta Learning
Louis Kirsch
Jürgen Schmidhuber
23
7
0
29 Dec 2022
Learning One Abstract Bit at a Time Through Self-Invented Experiments
  Encoded as Neural Networks
Learning One Abstract Bit at a Time Through Self-Invented Experiments Encoded as Neural Networks
Vincent Herrmann
Louis Kirsch
Jürgen Schmidhuber
AI4CE
38
4
0
29 Dec 2022
Why Can GPT Learn In-Context? Language Models Implicitly Perform
  Gradient Descent as Meta-Optimizers
Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers
Damai Dai
Yutao Sun
Li Dong
Y. Hao
Shuming Ma
Zhifang Sui
Furu Wei
LRM
15
147
0
20 Dec 2022
Transformers learn in-context by gradient descent
Transformers learn in-context by gradient descent
J. Oswald
Eyvind Niklasson
E. Randazzo
João Sacramento
A. Mordvintsev
A. Zhmoginov
Max Vladymyrov
MLT
28
427
0
15 Dec 2022
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
29
72
0
08 Dec 2022
Learning to Optimize with Dynamic Mode Decomposition
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
What learning algorithm is in-context learning? Investigations with
  linear models
What learning algorithm is in-context learning? Investigations with linear models
Ekin Akyürek
Dale Schuurmans
Jacob Andreas
Tengyu Ma
Denny Zhou
29
437
0
28 Nov 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
36
47
0
21 Nov 2022
Learning to Control Rapidly Changing Synaptic Connections: An
  Alternative Type of Memory in Sequence Processing Artificial Neural Networks
Learning to Control Rapidly Changing Synaptic Connections: An Alternative Type of Memory in Sequence Processing Artificial Neural Networks
Kazuki Irie
Jürgen Schmidhuber
KELM
16
1
0
17 Nov 2022
Discovered Policy Optimisation
Discovered Policy Optimisation
Chris Xiaoxuan Lu
J. Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob N. Foerster
OffRL
31
74
0
11 Oct 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function
  Classes
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
21
447
0
01 Aug 2022
Goal-Conditioned Generators of Deep Policies
Goal-Conditioned Generators of Deep Policies
Francesco Faccio
Vincent Herrmann
Aditya A. Ramesh
Louis Kirsch
Jürgen Schmidhuber
OffRL
25
8
0
04 Jul 2022
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
14
26
0
11 Feb 2022
A Simple Guard for Learned Optimizers
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
46
7
0
28 Jan 2022
Collective Intelligence for Deep Learning: A Survey of Recent
  Developments
Collective Intelligence for Deep Learning: A Survey of Recent Developments
David R Ha
Yu Tang
AI4CE
23
68
0
29 Nov 2021
Parameter Prediction for Unseen Deep Architectures
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
22
78
0
25 Oct 2021
Introducing Symmetries to Black Box Meta Reinforcement Learning
Introducing Symmetries to Black Box Meta Reinforcement Learning
Louis Kirsch
Sebastian Flennerhag
Hado van Hasselt
A. Friesen
Junhyuk Oh
Yutian Chen
15
30
0
22 Sep 2021
Evolving Decomposed Plasticity Rules for Information-Bottlenecked
  Meta-Learning
Evolving Decomposed Plasticity Rules for Information-Bottlenecked Meta-Learning
Fan Wang
Hao Tian
Haoyi Xiong
Hua-Hong Wu
Jie Fu
Yang Cao
Yu Kang
Haifeng Wang
AI4CE
15
3
0
08 Sep 2021
The Sensory Neuron as a Transformer: Permutation-Invariant Neural
  Networks for Reinforcement Learning
The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning
Yujin Tang
David R Ha
22
75
0
07 Sep 2021
Meta-Learning Bidirectional Update Rules
Meta-Learning Bidirectional Update Rules
Mark Sandler
Max Vladymyrov
A. Zhmoginov
Nolan Miller
Andrew Jackson
T. Madams
Blaise Agüera y Arcas
13
15
0
10 Apr 2021
Linear Transformers Are Secretly Fast Weight Programmers
Linear Transformers Are Secretly Fast Weight Programmers
Imanol Schlag
Kazuki Irie
Jürgen Schmidhuber
17
221
0
22 Feb 2021
Finding online neural update rules by learning to remember
Finding online neural update rules by learning to remember
Karol Gregor
CLL
34
6
0
06 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
1