Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.14905
Cited By
Meta Learning Backpropagation And Improving It
29 December 2020
Louis Kirsch
Jürgen Schmidhuber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Meta Learning Backpropagation And Improving It"
43 / 43 papers shown
Title
Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots
Binggwong Leung
Worasuchad Haomachai
J. Pedersen
S. Risi
Poramate Manoonpong
OODD
71
0
0
16 Mar 2025
Discovering Quality-Diversity Algorithms via Meta-Black-Box Optimization
Maxence Faldor
Robert Tjarko Lange
Antoine Cully
71
0
0
04 Feb 2025
JaxLife: An Open-Ended Agentic Simulator
Chris Xiaoxuan Lu
Michael Beukman
Michael T. Matthews
Jakob Foerster
LM&Ro
35
2
0
01 Sep 2024
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Yu Sun
Xinhao Li
Karan Dalal
Jiarui Xu
Arjun Vikram
...
Xinlei Chen
Xiaolong Wang
Sanmi Koyejo
Tatsunori Hashimoto
Carlos Guestrin
58
93
0
05 Jul 2024
Benchmarking General-Purpose In-Context Learning
Fan Wang
Chuan Lin
Yang Cao
Yu Kang
30
1
0
27 May 2024
FFCL: Forward-Forward Net with Cortical Loops, Training and Inference on Edge Without Backpropagation
Ali Karkehabadi
Houman Homayoun
Avesta Sasan
24
9
0
21 May 2024
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents
J. Pedersen
Erwan Plantec
Eleni Nisioti
Milton L. Montero
Sebastian Risi
36
1
0
06 Apr 2024
Language Agents as Optimizable Graphs
Mingchen Zhuge
Wenyi Wang
Louis Kirsch
Francesco Faccio
Dmitrii Khizbullin
Jürgen Schmidhuber
LLMAG
29
19
0
26 Feb 2024
Discovering Temporally-Aware Reinforcement Learning Algorithms
Matthew Jackson
Chris Xiaoxuan Lu
Louis Kirsch
R. T. Lange
Shimon Whiteson
Jakob N. Foerster
19
18
0
08 Feb 2024
Universal Neural Functionals
Allan Zhou
Chelsea Finn
James Harrison
27
12
0
07 Feb 2024
Are LSTMs Good Few-Shot Learners?
Mike Huisman
Thomas M. Moerland
Aske Plaat
Jan N. van Rijn
VLM
16
7
0
22 Oct 2023
Learning to (Learn at Test Time)
Yu Sun
Xinhao Li
Karan Dalal
Chloe Hsu
Oluwasanmi Koyejo
Carlos Guestrin
Xiaolong Wang
Tatsunori Hashimoto
Xinlei Chen
SSL
30
6
0
20 Oct 2023
The Languini Kitchen: Enabling Language Modelling Research at Different Scales of Compute
Aleksandar Stanić
Dylan R. Ashley
Oleg Serikov
Louis Kirsch
Francesco Faccio
Jürgen Schmidhuber
Thomas Hofmann
Imanol Schlag
MoE
38
9
0
20 Sep 2023
Understanding Catastrophic Forgetting in Language Models via Implicit Inference
Suhas Kotha
Jacob Mitchell Springer
Aditi Raghunathan
CLL
28
58
0
18 Sep 2023
Extending the Forward Forward Algorithm
Saumya Gandhi
Ritu Gala
Jonah Kornberg
Advaith Sridhar
25
6
0
09 Jul 2023
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason Eshraghian
28
52
0
18 May 2023
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
A. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
28
24
0
12 Apr 2023
Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Chris Xiaoxuan Lu
Tom Zahavy
Valentin Dalibard
Sebastian Flennerhag
24
34
0
08 Apr 2023
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
30
2
0
01 Feb 2023
Transformers as Algorithms: Generalization and Stability in In-context Learning
Yingcong Li
M. E. Ildiz
Dimitris Papailiopoulos
Samet Oymak
18
152
0
17 Jan 2023
Eliminating Meta Optimization Through Self-Referential Meta Learning
Louis Kirsch
Jürgen Schmidhuber
23
7
0
29 Dec 2022
Learning One Abstract Bit at a Time Through Self-Invented Experiments Encoded as Neural Networks
Vincent Herrmann
Louis Kirsch
Jürgen Schmidhuber
AI4CE
38
4
0
29 Dec 2022
Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers
Damai Dai
Yutao Sun
Li Dong
Y. Hao
Shuming Ma
Zhifang Sui
Furu Wei
LRM
15
147
0
20 Dec 2022
Transformers learn in-context by gradient descent
J. Oswald
Eyvind Niklasson
E. Randazzo
João Sacramento
A. Mordvintsev
A. Zhmoginov
Max Vladymyrov
MLT
28
427
0
15 Dec 2022
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
29
72
0
08 Dec 2022
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
What learning algorithm is in-context learning? Investigations with linear models
Ekin Akyürek
Dale Schuurmans
Jacob Andreas
Tengyu Ma
Denny Zhou
29
437
0
28 Nov 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
36
47
0
21 Nov 2022
Learning to Control Rapidly Changing Synaptic Connections: An Alternative Type of Memory in Sequence Processing Artificial Neural Networks
Kazuki Irie
Jürgen Schmidhuber
KELM
16
1
0
17 Nov 2022
Discovered Policy Optimisation
Chris Xiaoxuan Lu
J. Kuba
Alistair Letcher
Luke Metz
Christian Schroeder de Witt
Jakob N. Foerster
OffRL
31
74
0
11 Oct 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
21
447
0
01 Aug 2022
Goal-Conditioned Generators of Deep Policies
Francesco Faccio
Vincent Herrmann
Aditya A. Ramesh
Louis Kirsch
Jürgen Schmidhuber
OffRL
25
8
0
04 Jul 2022
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
14
26
0
11 Feb 2022
A Simple Guard for Learned Optimizers
Isabeau Prémont-Schwarz
Jaroslav Vítkru
Jan Feyereisl
46
7
0
28 Jan 2022
Collective Intelligence for Deep Learning: A Survey of Recent Developments
David R Ha
Yu Tang
AI4CE
23
68
0
29 Nov 2021
Parameter Prediction for Unseen Deep Architectures
Boris Knyazev
M. Drozdzal
Graham W. Taylor
Adriana Romero Soriano
OOD
22
78
0
25 Oct 2021
Introducing Symmetries to Black Box Meta Reinforcement Learning
Louis Kirsch
Sebastian Flennerhag
Hado van Hasselt
A. Friesen
Junhyuk Oh
Yutian Chen
15
30
0
22 Sep 2021
Evolving Decomposed Plasticity Rules for Information-Bottlenecked Meta-Learning
Fan Wang
Hao Tian
Haoyi Xiong
Hua-Hong Wu
Jie Fu
Yang Cao
Yu Kang
Haifeng Wang
AI4CE
15
3
0
08 Sep 2021
The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning
Yujin Tang
David R Ha
22
75
0
07 Sep 2021
Meta-Learning Bidirectional Update Rules
Mark Sandler
Max Vladymyrov
A. Zhmoginov
Nolan Miller
Andrew Jackson
T. Madams
Blaise Agüera y Arcas
13
15
0
10 Apr 2021
Linear Transformers Are Secretly Fast Weight Programmers
Imanol Schlag
Kazuki Irie
Jürgen Schmidhuber
17
221
0
22 Feb 2021
Finding online neural update rules by learning to remember
Karol Gregor
CLL
34
6
0
06 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
1