ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.13962
  4. Cited By
A Tutorial on Sparse Gaussian Processes and Variational Inference

A Tutorial on Sparse Gaussian Processes and Variational Inference

27 December 2020
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
    GP
ArXivPDFHTML

Papers citing "A Tutorial on Sparse Gaussian Processes and Variational Inference"

50 / 66 papers shown
Title
Gradient-based Sample Selection for Faster Bayesian Optimization
Gradient-based Sample Selection for Faster Bayesian Optimization
Qiyu Wei
Haowei Wang
Zirui Cao
Songhao Wang
Richard Allmendinger
Mauricio A Álvarez
40
0
0
10 Apr 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
115
0
0
02 Mar 2025
Specialization in Hierarchical Learning Systems
Specialization in Hierarchical Learning Systems
Heinke Hihn
Daniel A. Braun
55
16
0
03 Nov 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
37
54
0
30 Jun 2020
Variational Orthogonal Features
Variational Orthogonal Features
David R. Burt
C. Rasmussen
Mark van der Wilk
BDL
DRL
14
12
0
23 Jun 2020
Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes on Riemannian manifolds
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
33
122
0
17 Jun 2020
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Bürkner
Michael R. Andersen
Arno Solin
Aki Vehtari
39
70
0
23 Apr 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
50
94
0
02 Mar 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
16
163
0
21 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
109
10,591
0
17 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
32
25
0
15 Jan 2020
Mutual-Information Regularization in Markov Decision Processes and
  Actor-Critic Learning
Mutual-Information Regularization in Markov Decision Processes and Actor-Critic Learning
Felix Leibfried
Jordi Grau-Moya
29
22
0
11 Sep 2019
A Unified Bellman Optimality Principle Combining Reward Maximization and
  Empowerment
A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
Felix Leibfried
Sergio Pascual-Diaz
Jordi Grau-Moya
73
28
0
26 Jul 2019
An Information-theoretic On-line Learning Principle for Specialization
  in Hierarchical Decision-Making Systems
An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
35
16
0
26 Jul 2019
Benchmarking Model-Based Reinforcement Learning
Benchmarking Model-Based Reinforcement Learning
Tingwu Wang
Xuchan Bao
I. Clavera
Jerrick Hoang
Yeming Wen
Eric D. Langlois
Matthew Shunshi Zhang
Guodong Zhang
Pieter Abbeel
Jimmy Ba
OffRL
44
361
0
03 Jul 2019
Disentangled Skill Embeddings for Reinforcement Learning
Disentangled Skill Embeddings for Reinforcement Learning
Janith C. Petangoda
Sergio Pascual-Diaz
Vincent Adam
Peter Vrancx
Jordi Grau-Moya
DRL
OffRL
31
15
0
21 Jun 2019
Exploring Model-based Planning with Policy Networks
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
54
148
0
20 Jun 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
46
939
0
19 Jun 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
52
43
0
14 May 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
40
152
0
08 Mar 2019
Model-Based Reinforcement Learning for Atari
Model-Based Reinforcement Learning for Atari
Lukasz Kaiser
Mohammad Babaeizadeh
Piotr Milos
B. Osinski
R. Campbell
...
Sergey Levine
Afroz Mohiuddin
Ryan Sepassi
George Tucker
Henryk Michalewski
OffRL
84
851
0
01 Mar 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
107
32
0
15 Feb 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
94
2,391
0
13 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
84
121
0
10 Dec 2018
Gaussian Process Conditional Density Estimation
Gaussian Process Conditional Density Estimation
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
51
52
0
30 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
48
60
0
06 Oct 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
56
1,088
0
28 Sep 2018
Model-Based Regularization for Deep Reinforcement Learning with
  Transcoder Networks
Model-Based Regularization for Deep Reinforcement Learning with Transcoder Networks
Felix Leibfried
Peter Vrancx
OffRL
31
7
0
06 Sep 2018
Importance Weighting and Variational Inference
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
34
107
0
27 Aug 2018
Algorithmic Framework for Model-based Deep Reinforcement Learning with
  Theoretical Guarantees
Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees
Yuping Luo
Huazhe Xu
Yuanzhi Li
Yuandong Tian
Trevor Darrell
Tengyu Ma
OffRL
87
225
0
10 Jul 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
111
1,263
0
30 May 2018
Variational Inference for Data-Efficient Model Learning in POMDPs
Variational Inference for Data-Efficient Model Learning in POMDPs
Sebastian Tschiatschek
Kai Arulkumaran
Jan Stühmer
Katja Hofmann
31
15
0
23 May 2018
Reinforcement Learning and Control as Probabilistic Inference: Tutorial
  and Review
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
Sergey Levine
AI4CE
BDL
41
667
0
02 May 2018
An information-theoretic on-line update principle for perception-action
  coupling
An information-theoretic on-line update principle for perception-action coupling
Zhen Peng
Tim Genewein
Felix Leibfried
Daniel A. Braun
24
13
0
16 Apr 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
33
450
0
28 Feb 2018
Balancing Two-Player Stochastic Games with Soft Q-Learning
Balancing Two-Player Stochastic Games with Soft Q-Learning
Jordi Grau-Moya
Felix Leibfried
Haitham Bou-Ammar
74
42
0
09 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
159
8,236
0
04 Jan 2018
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
45
130
0
06 Sep 2017
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with
  Model-Free Fine-Tuning
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning
Anusha Nagabandi
G. Kahn
R. Fearing
Sergey Levine
62
967
0
08 Aug 2017
An Information-Theoretic Optimality Principle for Deep Reinforcement
  Learning
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
Felix Leibfried
Jordi Grau-Moya
Haitham Bou-Ammar
69
24
0
06 Aug 2017
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
91
217
0
20 Jun 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
52
111
0
30 May 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
61
418
0
24 May 2017
A unified view of entropy-regularized Markov decision processes
A unified view of entropy-regularized Markov decision processes
Gergely Neu
Anders Jonsson
Vicencc Gómez
76
255
0
22 May 2017
Equivalence Between Policy Gradients and Soft Q-Learning
Equivalence Between Policy Gradients and Soft Q-Learning
John Schulman
Xi Chen
Pieter Abbeel
OffRL
52
344
0
21 Apr 2017
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Bridging the Gap Between Value and Policy Based Reinforcement Learning
Ofir Nachum
Mohammad Norouzi
Kelvin Xu
Dale Schuurmans
72
469
0
28 Feb 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
42
1,329
0
27 Feb 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
39
200
0
21 Nov 2016
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
53
662
0
27 Oct 2016
Chained Gaussian Processes
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
22
59
0
18 Apr 2016
12
Next