Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.13343
Cited By
Physics guided machine learning using simplified theories
18 December 2020
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics guided machine learning using simplified theories"
9 / 9 papers shown
Title
Sparse deep neural networks for modeling aluminum electrolysis dynamics
E. Lundby
Adil Rasheed
I. Halvorsen
J. Gravdahl
21
14
0
13 Sep 2022
Decentralized digital twins of complex dynamical systems
Omer San
Suraj Pawar
Adil Rasheed
AI4CE
32
11
0
07 Jul 2022
Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach
Sindre Stenen Blakseth
Adil Rasheed
T. Kvamsdal
Omer San
AI4CE
26
31
0
07 Jun 2022
Supplementation of deep neural networks with simplified physics-based features to increase model prediction accuracy
Nicholus R. Clinkinbeard
Nicole N. Hashemi
PINN
AI4CE
33
0
0
14 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Image features of a splashing drop on a solid surface extracted using a feedforward neural network
Jingzu Yee
A. Yamanaka
Yoshiyuki Tagawa(田川義之)
17
14
0
24 Jan 2022
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution
Omer San
Adil Rasheed
T. Kvamsdal
45
50
0
26 Mar 2021
Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
Naoya Takeishi
Alexandros Kalousis
DRL
AI4CE
22
54
0
25 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
1