Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.11638
Cited By
Unsupervised in-distribution anomaly detection of new physics through conditional density estimation
21 December 2020
G. Stein
U. Seljak
B. Dai
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unsupervised in-distribution anomaly detection of new physics through conditional density estimation"
7 / 7 papers shown
Title
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
36
6
0
30 May 2024
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
42
113
0
07 Dec 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection
Vinicius Mikuni
Benjamin Nachman
David Shih
27
35
0
11 Nov 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
27
43
0
13 Oct 2021
Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
J. Collins
P. Martín-Ramiro
Benjamin Nachman
David Shih
29
44
0
05 Apr 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
21
32
0
09 Jun 2020
1