Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.10425
Cited By
Towards Robust Explanations for Deep Neural Networks
18 December 2020
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Robust Explanations for Deep Neural Networks"
38 / 38 papers shown
Title
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
Integrative CAM: Adaptive Layer Fusion for Comprehensive Interpretation of CNNs
Aniket K. Singh
Debasis Chaudhuri
Manish P. Singh
Samiran Chattopadhyay
65
0
0
02 Dec 2024
Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density
Peiyu Yang
Naveed Akhtar
Mubarak Shah
Ajmal Saeed Mian
AAML
31
1
0
05 Jul 2024
MambaLRP: Explaining Selective State Space Sequence Models
F. Jafari
G. Montavon
Klaus-Robert Müller
Oliver Eberle
Mamba
59
9
0
11 Jun 2024
Revealing Vulnerabilities of Neural Networks in Parameter Learning and Defense Against Explanation-Aware Backdoors
Md Abdul Kadir
G. Addluri
Daniel Sonntag
AAML
44
0
0
25 Mar 2024
Verified Training for Counterfactual Explanation Robustness under Data Shift
Anna P. Meyer
Yuhao Zhang
Aws Albarghouthi
Loris Dántoni
AAML
OOD
53
2
0
06 Mar 2024
AttnLRP: Attention-Aware Layer-Wise Relevance Propagation for Transformers
Reduan Achtibat
Sayed Mohammad Vakilzadeh Hatefi
Maximilian Dreyer
Aakriti Jain
Thomas Wiegand
Sebastian Lapuschkin
Wojciech Samek
28
25
0
08 Feb 2024
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
AAML
66
20
0
12 Jan 2024
Model-Agnostic Interpretation Framework in Machine Learning: A Comparative Study in NBA Sports
Shun Liu
14
0
0
05 Jan 2024
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
23
4
0
01 Nov 2023
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
On the Robustness of Removal-Based Feature Attributions
Christy Lin
Ian Covert
Su-In Lee
22
12
0
12 Jun 2023
Unveiling the Hessian's Connection to the Decision Boundary
Mahalakshmi Sabanayagam
Freya Behrens
Urte Adomaityte
Anna Dawid
20
5
0
12 Jun 2023
Overcoming Adversarial Attacks for Human-in-the-Loop Applications
Ryan McCoppin
Marla Kennedy
P. Lukyanenko
Sean M. Kennedy
AAML
20
1
0
09 Jun 2023
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
42
63
0
06 Jun 2023
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
48
17
0
30 Dec 2022
Provable Robust Saliency-based Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
AAML
FAtt
33
0
0
28 Dec 2022
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
23
17
0
16 Dec 2022
Towards More Robust Interpretation via Local Gradient Alignment
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
27
5
0
29 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
24
10
0
17 Oct 2022
SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability
Wei Huang
Xingyu Zhao
Gao Jin
Xiaowei Huang
AAML
35
29
0
19 Aug 2022
Robustness of Explanation Methods for NLP Models
Shriya Atmakuri
Tejas Chheda
Dinesh Kandula
Nishant Yadav
Taesung Lee
Hessel Tuinhof
FAtt
AAML
19
4
0
24 Jun 2022
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
Diffeomorphic Counterfactuals with Generative Models
Ann-Kathrin Dombrowski
Jan E. Gerken
Klaus-Robert Muller
Pan Kessel
DiffM
BDL
27
15
0
10 Jun 2022
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series
Christoffer Loeffler
Wei-Cheng Lai
Bjoern M. Eskofier
Dario Zanca
Lukas M. Schmidt
Christopher Mutschler
FAtt
AI4TS
35
5
0
14 Mar 2022
Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience
Antonios Mamalakis
E. Barnes
I. Ebert‐Uphoff
21
73
0
07 Feb 2022
Debiased-CAM to mitigate systematic error with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
19
1
0
30 Jan 2022
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
K. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
12
4
0
28 Jan 2022
Scrutinizing XAI using linear ground-truth data with suppressor variables
Rick Wilming
Céline Budding
K. Müller
Stefan Haufe
FAtt
11
26
0
14 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
43
5
0
15 Sep 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
31
25
0
23 Aug 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
28
75
0
18 Mar 2021
Visual explanation of black-box model: Similarity Difference and Uniqueness (SIDU) method
Satya M. Muddamsetty
M. N. Jahromi
Andreea-Emilia Ciontos
Laura M. Fenoy
T. Moeslund
AAML
34
26
0
26 Jan 2021
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
21
18
0
10 Dec 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1