ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.10425
  4. Cited By
Towards Robust Explanations for Deep Neural Networks

Towards Robust Explanations for Deep Neural Networks

18 December 2020
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
    FAtt
ArXivPDFHTML

Papers citing "Towards Robust Explanations for Deep Neural Networks"

38 / 38 papers shown
Title
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
Integrative CAM: Adaptive Layer Fusion for Comprehensive Interpretation
  of CNNs
Integrative CAM: Adaptive Layer Fusion for Comprehensive Interpretation of CNNs
Aniket K. Singh
Debasis Chaudhuri
Manish P. Singh
Samiran Chattopadhyay
65
0
0
02 Dec 2024
Regulating Model Reliance on Non-Robust Features by Smoothing Input
  Marginal Density
Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density
Peiyu Yang
Naveed Akhtar
Mubarak Shah
Ajmal Saeed Mian
AAML
31
1
0
05 Jul 2024
MambaLRP: Explaining Selective State Space Sequence Models
MambaLRP: Explaining Selective State Space Sequence Models
F. Jafari
G. Montavon
Klaus-Robert Müller
Oliver Eberle
Mamba
59
9
0
11 Jun 2024
Revealing Vulnerabilities of Neural Networks in Parameter Learning and
  Defense Against Explanation-Aware Backdoors
Revealing Vulnerabilities of Neural Networks in Parameter Learning and Defense Against Explanation-Aware Backdoors
Md Abdul Kadir
G. Addluri
Daniel Sonntag
AAML
44
0
0
25 Mar 2024
Verified Training for Counterfactual Explanation Robustness under Data
  Shift
Verified Training for Counterfactual Explanation Robustness under Data Shift
Anna P. Meyer
Yuhao Zhang
Aws Albarghouthi
Loris Dántoni
AAML
OOD
53
2
0
06 Mar 2024
AttnLRP: Attention-Aware Layer-Wise Relevance Propagation for
  Transformers
AttnLRP: Attention-Aware Layer-Wise Relevance Propagation for Transformers
Reduan Achtibat
Sayed Mohammad Vakilzadeh Hatefi
Maximilian Dreyer
Aakriti Jain
Thomas Wiegand
Sebastian Lapuschkin
Wojciech Samek
28
25
0
08 Feb 2024
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI
  Benchmarks
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
AAML
66
20
0
12 Jan 2024
Model-Agnostic Interpretation Framework in Machine Learning: A
  Comparative Study in NBA Sports
Model-Agnostic Interpretation Framework in Machine Learning: A Comparative Study in NBA Sports
Shun Liu
14
0
0
05 Jan 2024
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
SmoothHess: ReLU Network Feature Interactions via Stein's Lemma
Max Torop
A. Masoomi
Davin Hill
Kivanc Kose
Stratis Ioannidis
Jennifer Dy
23
4
0
01 Nov 2023
Robust Ranking Explanations
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
On the Robustness of Removal-Based Feature Attributions
On the Robustness of Removal-Based Feature Attributions
Christy Lin
Ian Covert
Su-In Lee
22
12
0
12 Jun 2023
Unveiling the Hessian's Connection to the Decision Boundary
Unveiling the Hessian's Connection to the Decision Boundary
Mahalakshmi Sabanayagam
Freya Behrens
Urte Adomaityte
Anna Dawid
20
5
0
12 Jun 2023
Overcoming Adversarial Attacks for Human-in-the-Loop Applications
Overcoming Adversarial Attacks for Human-in-the-Loop Applications
Ryan McCoppin
Marla Kennedy
P. Lukyanenko
Sean M. Kennedy
AAML
20
1
0
09 Jun 2023
Adversarial attacks and defenses in explainable artificial intelligence:
  A survey
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
42
63
0
06 Jun 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
48
17
0
30 Dec 2022
Provable Robust Saliency-based Explanations
Provable Robust Saliency-based Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
AAML
FAtt
33
0
0
28 Dec 2022
Robust Explanation Constraints for Neural Networks
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
23
17
0
16 Dec 2022
Towards More Robust Interpretation via Local Gradient Alignment
Towards More Robust Interpretation via Local Gradient Alignment
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
27
5
0
29 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of
  Explanations
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A
  Survey
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
A.I. Robustness: a Human-Centered Perspective on Technological
  Challenges and Opportunities
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
24
10
0
17 Oct 2022
SAFARI: Versatile and Efficient Evaluations for Robustness of
  Interpretability
SAFARI: Versatile and Efficient Evaluations for Robustness of Interpretability
Wei Huang
Xingyu Zhao
Gao Jin
Xiaowei Huang
AAML
35
29
0
19 Aug 2022
Robustness of Explanation Methods for NLP Models
Robustness of Explanation Methods for NLP Models
Shriya Atmakuri
Tejas Chheda
Dinesh Kandula
Nishant Yadav
Taesung Lee
Hessel Tuinhof
FAtt
AAML
19
4
0
24 Jun 2022
Efficiently Training Low-Curvature Neural Networks
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
Diffeomorphic Counterfactuals with Generative Models
Diffeomorphic Counterfactuals with Generative Models
Ann-Kathrin Dombrowski
Jan E. Gerken
Klaus-Robert Muller
Pan Kessel
DiffM
BDL
27
15
0
10 Jun 2022
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time
  Series
Don't Get Me Wrong: How to Apply Deep Visual Interpretations to Time Series
Christoffer Loeffler
Wei-Cheng Lai
Bjoern M. Eskofier
Dario Zanca
Lukas M. Schmidt
Christopher Mutschler
FAtt
AI4TS
35
5
0
14 Mar 2022
Investigating the fidelity of explainable artificial intelligence
  methods for applications of convolutional neural networks in geoscience
Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience
Antonios Mamalakis
E. Barnes
I. Ebert‐Uphoff
21
73
0
07 Feb 2022
Debiased-CAM to mitigate systematic error with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
19
1
0
30 Jan 2022
Locally Invariant Explanations: Towards Stable and Unidirectional
  Explanations through Local Invariant Learning
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
K. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
12
4
0
28 Jan 2022
Scrutinizing XAI using linear ground-truth data with suppressor
  variables
Scrutinizing XAI using linear ground-truth data with suppressor variables
Rick Wilming
Céline Budding
K. Müller
Stefan Haufe
FAtt
11
26
0
14 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual
  Explanations
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Self-learn to Explain Siamese Networks Robustly
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
43
5
0
15 Sep 2021
Explaining Bayesian Neural Networks
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
31
25
0
23 Aug 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel
  Synthetic Benchmark Dataset
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
28
75
0
18 Mar 2021
Visual explanation of black-box model: Similarity Difference and
  Uniqueness (SIDU) method
Visual explanation of black-box model: Similarity Difference and Uniqueness (SIDU) method
Satya M. Muddamsetty
M. N. Jahromi
Andreea-Emilia Ciontos
Laura M. Fenoy
T. Moeslund
AAML
34
26
0
26 Jan 2021
Debiased-CAM to mitigate image perturbations with faithful visual
  explanations of machine learning
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
21
18
0
10 Dec 2020
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1