Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.10425
Cited By
Towards Robust Explanations for Deep Neural Networks
18 December 2020
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Robust Explanations for Deep Neural Networks"
19 / 19 papers shown
Title
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
MambaLRP: Explaining Selective State Space Sequence Models
F. Jafari
G. Montavon
Klaus-Robert Müller
Oliver Eberle
Mamba
59
9
0
11 Jun 2024
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
Overcoming Adversarial Attacks for Human-in-the-Loop Applications
Ryan McCoppin
Marla Kennedy
P. Lukyanenko
Sean M. Kennedy
AAML
18
1
0
09 Jun 2023
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
45
17
0
30 Dec 2022
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
21
17
0
16 Dec 2022
Towards More Robust Interpretation via Local Gradient Alignment
Sunghwan Joo
Seokhyeon Jeong
Juyeon Heo
Adrian Weller
Taesup Moon
FAtt
25
5
0
29 Nov 2022
What Makes a Good Explanation?: A Harmonized View of Properties of Explanations
Zixi Chen
Varshini Subhash
Marton Havasi
Weiwei Pan
Finale Doshi-Velez
XAI
FAtt
33
18
0
10 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
Efficiently Training Low-Curvature Neural Networks
Suraj Srinivas
Kyle Matoba
Himabindu Lakkaraju
F. Fleuret
AAML
23
15
0
14 Jun 2022
Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience
Antonios Mamalakis
E. Barnes
I. Ebert‐Uphoff
19
73
0
07 Feb 2022
Debiased-CAM to mitigate systematic error with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
19
1
0
30 Jan 2022
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
38
5
0
15 Sep 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
31
25
0
23 Aug 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
23
75
0
18 Mar 2021
Visual explanation of black-box model: Similarity Difference and Uniqueness (SIDU) method
Satya M. Muddamsetty
M. N. Jahromi
Andreea-Emilia Ciontos
Laura M. Fenoy
T. Moeslund
AAML
32
26
0
26 Jan 2021
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
21
18
0
10 Dec 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1