Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.09632
Cited By
From Weakly Supervised Learning to Biquality Learning: an Introduction
16 December 2020
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
A. Ouorou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"From Weakly Supervised Learning to Biquality Learning: an Introduction"
26 / 26 papers shown
Title
Learning active learning at the crossroads? evaluation and discussion
L. Desreumaux
V. Lemaire
51
12
0
16 Dec 2020
Importance Reweighting for Biquality Learning
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
NoLa
35
6
0
19 Oct 2020
Rethinking Importance Weighting for Deep Learning under Distribution Shift
Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
48
139
0
08 Jun 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
91
1,026
0
18 Feb 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
196
1,405
0
21 Oct 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
D. Song
OOD
SSL
50
944
0
28 Jun 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
68
377
0
01 Jun 2019
On Symmetric Losses for Learning from Corrupted Labels
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
NoLa
51
105
0
27 Jan 2019
Learning from positive and unlabeled data: a survey
Jessa Bekker
Jesse Davis
72
560
0
12 Nov 2018
Discovering General-Purpose Active Learning Strategies
Ksenia Konyushkova
Raphael Sznitman
Pascal Fua
62
35
0
09 Oct 2018
Dynamic Ensemble Active Learning: A Non-Stationary Bandit with Expert Advice
Kunkun Pang
Mingzhi Dong
Yang Wu
Timothy M. Hospedales
25
18
0
29 Sep 2018
Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning
Kunkun Pang
Mingzhi Dong
Yang Wu
Timothy M. Hospedales
OffRL
37
91
0
12 Jun 2018
Strong Baselines for Neural Semi-supervised Learning under Domain Shift
Sebastian Ruder
Barbara Plank
36
172
0
25 Apr 2018
Deep Co-Training for Semi-Supervised Image Recognition
Siyuan Qiao
Wei Shen
Zhishuai Zhang
Bo Wang
Alan Yuille
55
450
0
15 Mar 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
127
553
0
14 Feb 2018
Snorkel: Rapid Training Data Creation with Weak Supervision
Alexander Ratner
Stephen H. Bach
Henry R. Ehrenberg
Jason Alan Fries
Sen Wu
Christopher Ré
73
1,024
0
28 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
269
9,743
0
25 Oct 2017
Learning Active Learning from Data
Ksenia Konyushkova
Raphael Sznitman
Pascal Fua
49
302
0
09 Mar 2017
Asymmetric Tri-training for Unsupervised Domain Adaptation
Kuniaki Saito
Yoshitaka Ushiku
Tatsuya Harada
113
587
0
27 Feb 2017
Multiple Instance Learning: A Survey of Problem Characteristics and Applications
M. Carbonneau
Veronika Cheplygina
Eric Granger
G. Gagnon
56
624
0
11 Dec 2016
A Benchmark and Comparison of Active Learning for Logistic Regression
Yazhou Yang
Marco Loog
56
151
0
25 Nov 2016
Learning from Untrusted Data
Moses Charikar
Jacob Steinhardt
Gregory Valiant
FedML
OOD
86
295
0
07 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
90
1,448
0
13 Sep 2016
Can Active Learning Experience Be Transferred?
Hong-Min Chu
Hsuan-Tien Lin
41
30
0
02 Aug 2016
Training Deep Neural Networks on Noisy Labels with Bootstrapping
Scott E. Reed
Honglak Lee
Dragomir Anguelov
Christian Szegedy
D. Erhan
Andrew Rabinovich
NoLa
109
1,019
0
20 Dec 2014
One-Class Classification: Taxonomy of Study and Review of Techniques
Shehroz S. Khan
Michael G. Madden
68
567
0
30 Nov 2013
1