ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.09418
  4. Cited By
PanoNet3D: Combining Semantic and Geometric Understanding for LiDARPoint
  Cloud Detection

PanoNet3D: Combining Semantic and Geometric Understanding for LiDARPoint Cloud Detection

17 December 2020
Xia Chen
Jianren Wang
David Held
M. Hebert
    3DPC
ArXivPDFHTML

Papers citing "PanoNet3D: Combining Semantic and Geometric Understanding for LiDARPoint Cloud Detection"

4 / 4 papers shown
Title
Geometrically-driven Aggregation for Zero-shot 3D Point Cloud
  Understanding
Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding
Guofeng Mei
Luigi Riz
Yiming Wang
Fabio Poiesi
3DPC
35
6
0
04 Dec 2023
ImpDet: Exploring Implicit Fields for 3D Object Detection
ImpDet: Exploring Implicit Fields for 3D Object Detection
Xuelin Qian
Li Wang
Yishuang Zhu
Li Zhang
Yanwei Fu
Xiangyang Xue
3DPC
39
6
0
31 Mar 2022
Range-Aware Attention Network for LiDAR-based 3D Object Detection with
  Auxiliary Point Density Level Estimation
Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Point Density Level Estimation
Yantao Lu
Xuetao Hao
Yilan Li
Weiheng Chai
Shiqi Sun
Senem Velipasalar
3DPC
32
5
0
18 Nov 2021
Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection
Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection
Benjin Zhu
Zhengkai Jiang
Xiangxin Zhou
Zeming Li
Gang Yu
3DPC
169
485
0
26 Aug 2019
1