Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.08749
Cited By
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
16 December 2020
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks"
34 / 34 papers shown
Title
MergeBench: A Benchmark for Merging Domain-Specialized LLMs
Yifei He
Siqi Zeng
Yuzheng Hu
Rui Yang
Tong Zhang
Han Zhao
MoMe
ALM
19
0
0
16 May 2025
Spurious Correlations in High Dimensional Regression: The Roles of Regularization, Simplicity Bias and Over-Parameterization
Simone Bombari
Marco Mondelli
124
0
0
03 Feb 2025
Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity
Alessandro Pierro
Steven Abreu
Jonathan Timcheck
Philipp Stratmann
Andreas Wild
S. Shrestha
70
0
0
03 Feb 2025
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
31
0
0
28 Jan 2025
Beyond adaptive gradient: Fast-Controlled Minibatch Algorithm for large-scale optimization
Corrado Coppola
Lorenzo Papa
Irene Amerini
L. Palagi
ODL
79
0
0
24 Nov 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
54
2
0
24 Oct 2024
Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks
Chiraag Kaushik
Justin Romberg
Vidya Muthukumar
39
1
0
04 Jun 2024
Occam Gradient Descent
B. N. Kausik
ODL
VLM
32
0
0
30 May 2024
Class-wise Activation Unravelling the Engima of Deep Double Descent
Yufei Gu
36
0
0
13 May 2024
Masks, Signs, And Learning Rate Rewinding
Advait Gadhikar
R. Burkholz
55
8
0
29 Feb 2024
Understanding the Role of Optimization in Double Descent
Chris Liu
Jeffrey Flanigan
32
0
0
06 Dec 2023
Efficient Compression of Overparameterized Deep Models through Low-Dimensional Learning Dynamics
Soo Min Kwon
Zekai Zhang
Dogyoon Song
Laura Balzano
Qing Qu
39
2
0
08 Nov 2023
Unraveling the Enigma of Double Descent: An In-depth Analysis through the Lens of Learned Feature Space
Yufei Gu
Xiaoqing Zheng
T. Aste
37
3
0
20 Oct 2023
The Quest of Finding the Antidote to Sparse Double Descent
Victor Quétu
Marta Milovanović
31
0
0
31 Aug 2023
DSD
2
^2
2
: Can We Dodge Sparse Double Descent and Compress the Neural Network Worry-Free?
Victor Quétu
Enzo Tartaglione
29
7
0
02 Mar 2023
Can we avoid Double Descent in Deep Neural Networks?
Victor Quétu
Enzo Tartaglione
AI4CE
20
3
0
26 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
35
19
0
13 Feb 2023
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
32
9
0
18 Jan 2023
Why Random Pruning Is All We Need to Start Sparse
Advait Gadhikar
Sohom Mukherjee
R. Burkholz
43
19
0
05 Oct 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
63
10
0
21 Sep 2022
Overparameterization from Computational Constraints
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
Mingyuan Wang
20
1
0
27 Aug 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
69
27
0
17 Jun 2022
Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis
Wuyang Chen
Wei Huang
Xinyu Gong
Boris Hanin
Zhangyang Wang
30
7
0
11 May 2022
Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves
David Bosch
Ashkan Panahi
Ayça Özçelikkale
Devdatt Dubhash
MLT
16
2
0
06 Apr 2022
Provable and Efficient Continual Representation Learning
Yingcong Li
Mingchen Li
M. Salman Asif
Samet Oymak
CLL
30
11
0
03 Mar 2022
Towards Sample-efficient Overparameterized Meta-learning
Yue Sun
Adhyyan Narang
Halil Ibrahim Gulluk
Samet Oymak
Maryam Fazel
BDL
30
24
0
16 Jan 2022
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
How much pre-training is enough to discover a good subnetwork?
Cameron R. Wolfe
Fangshuo Liao
Qihan Wang
J. Kim
Anastasios Kyrillidis
30
3
0
31 Jul 2021
Spectral Pruning for Recurrent Neural Networks
Takashi Furuya
Kazuma Suetake
K. Taniguchi
Hiroyuki Kusumoto
Ryuji Saiin
Tomohiro Daimon
27
4
0
23 May 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Lottery Jackpots Exist in Pre-trained Models
Yu-xin Zhang
Mingbao Lin
Yan Wang
Rongrong Ji
Rongrong Ji
30
15
0
18 Apr 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
Distilling Double Descent
Andrew Cotter
A. Menon
Harikrishna Narasimhan
A. S. Rawat
Sashank J. Reddi
Yichen Zhou
25
7
0
13 Feb 2021
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Ke Wang
Christos Thrampoulidis
28
27
0
18 Nov 2020
1