ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.00259
60
3
v1v2v3 (latest)

How much pre-training is enough to discover a good subnetwork?

31 July 2021
Cameron R. Wolfe
Fangshuo Liao
Qihan Wang
Junhyung Lyle Kim
Anastasios Kyrillidis
ArXiv (abs)PDFHTML
Abstract

Neural network pruning is useful for discovering efficient, high-performing subnetworks within pre-trained, dense network architectures. More often than not, it involves a three-step process -- pre-training, pruning, and re-training -- that is computationally expensive, as the dense model must be fully pre-trained. While previous work has revealed through experiments the relationship between the amount of pre-training and the performance of the pruned network, a theoretical characterization of such dependency is still missing. Aiming to mathematically analyze the amount of dense network pre-training needed for a pruned network to perform well, we discover a simple theoretical bound in the number of gradient descent pre-training iterations on a two-layer, fully-connected network, beyond which pruning via greedy forward selection [61] yields a subnetwork that achieves good training error. Interestingly, this threshold is shown to be logarithmically dependent upon the size of the dataset, meaning that experiments with larger datasets require more pre-training for subnetworks obtained via pruning to perform well. Lastly, we empirically validate our theoretical results on a multi-layer perceptron trained on MNIST.

View on arXiv
Comments on this paper