ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.08143
  4. Cited By
NeuralQAAD: An Efficient Differentiable Framework for High Resolution
  Point Cloud Compression

NeuralQAAD: An Efficient Differentiable Framework for High Resolution Point Cloud Compression

15 December 2020
Nicolas Wagner
Ulrich Schwanecke
    3DPC
ArXivPDFHTML

Papers citing "NeuralQAAD: An Efficient Differentiable Framework for High Resolution Point Cloud Compression"

3 / 3 papers shown
Title
3D-CODED : 3D Correspondences by Deep Deformation
3D-CODED : 3D Correspondences by Deep Deformation
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
3DPC
3DV
132
325
0
13 Jun 2018
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
  Filters
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
Yifan Xu
Tianqi Fan
Mingye Xu
Long Zeng
Yu Qiao
3DV
3DPC
152
769
0
30 Mar 2018
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
189
1,941
0
24 Oct 2016
1