Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.07923
Cited By
Improving model calibration with accuracy versus uncertainty optimization
14 December 2020
R. Krishnan
Omesh Tickoo
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving model calibration with accuracy versus uncertainty optimization"
36 / 36 papers shown
Title
Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Haoyang Luo
Linwei Tao
Minjing Dong
Chang Xu
72
0
0
18 Apr 2025
Uncertainty Weighted Gradients for Model Calibration
Jinxu Lin
Linwei Tao
Minjing Dong
Chang Xu
UQCV
65
0
0
26 Mar 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
134
2
0
03 Jan 2025
Optimizing Calibration by Gaining Aware of Prediction Correctness
Yuchi Liu
Lei Wang
Yuli Zou
James Zou
Liang Zheng
UQCV
61
2
0
19 Apr 2024
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
135
3
0
17 Jul 2023
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
69
454
0
21 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
211
42,038
0
03 Dec 2019
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
53
378
0
28 Oct 2019
Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
UQCV
27
55
0
30 Sep 2019
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
106
352
0
23 Sep 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
36
56
0
01 Jul 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
UQCV
46
117
0
27 Jun 2019
Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes
R. Krishnan
Mahesh Subedar
Omesh Tickoo
BDL
35
47
0
12 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
135
1,677
0
06 Jun 2019
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDL
UQCV
97
13
0
30 May 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
57
535
0
27 May 2019
The Fishyscapes Benchmark: Measuring Blind Spots in Semantic Segmentation
Hermann Blum
Paul-Edouard Sarlin
Juan I. Nieto
Roland Siegwart
Cesar Cadena
UQCV
23
157
0
05 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
96
3,399
0
28 Mar 2019
A Simple Baseline for Bayesian Uncertainty in Deep Learning
Wesley J. Maddox
T. Garipov
Pavel Izmailov
Dmitry Vetrov
A. Wilson
BDL
UQCV
71
801
0
07 Feb 2019
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
Jishnu Mukhoti
Y. Gal
UQCV
BDL
55
221
0
30 Nov 2018
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects
Michael A. Alcorn
Melvin Johnson
Zhitao Gong
Chengfei Wang
Long Mai
Naveen Ari
Stella Laurenzo
78
299
0
28 Nov 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
108
2,024
0
10 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
131
626
0
01 Jul 2018
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
Adam D. Cobb
Stephen J. Roberts
Y. Gal
BDL
UQCV
42
43
0
10 May 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
75
361
0
22 Mar 2018
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
55
365
0
26 Feb 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
181
5,774
0
14 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
250
4,667
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
463
5,748
0
05 Dec 2016
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
143
2,349
0
21 Jun 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.2K
192,638
0
10 Dec 2015
On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests
Aaditya Ramdas
Nicolas García Trillos
Marco Cuturi
34
482
0
08 Sep 2015
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
144
1,500
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
439
9,233
0
06 Jun 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
62
902
0
17 Feb 2014
Bayesian Active Learning for Classification and Preference Learning
N. Houlsby
Ferenc Huszár
Zoubin Ghahramani
M. Lengyel
58
901
0
24 Dec 2011
1