ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.07421
  4. Cited By
WILDS: A Benchmark of in-the-Wild Distribution Shifts

WILDS: A Benchmark of in-the-Wild Distribution Shifts

14 December 2020
Pang Wei Koh
Shiori Sagawa
Henrik Marklund
Sang Michael Xie
Marvin Zhang
Akshay Balsubramani
Weihua Hu
Michihiro Yasunaga
Richard Lanas Phillips
Irena Gao
Tony Lee
Etiene David
Ian Stavness
Wei Guo
Berton Earnshaw
I. Haque
Sara Beery
J. Leskovec
A. Kundaje
Emma Pierson
Sergey Levine
Chelsea Finn
Percy Liang
    OOD
ArXivPDFHTML

Papers citing "WILDS: A Benchmark of in-the-Wild Distribution Shifts"

50 / 942 papers shown
Title
The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object
  Tracking and Counting
The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object Tracking and Counting
Justin Kay
Peter Kulits
Suzanne Stathatos
Siqi Deng
Erik Young
Sara Beery
Grant Van Horn
Pietro Perona
27
26
0
19 Jul 2022
Assaying Out-Of-Distribution Generalization in Transfer Learning
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
60
71
0
19 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift
Ananya Kumar
Tengyu Ma
Percy Liang
Aditi Raghunathan
UQCV
OODD
OOD
45
38
0
18 Jul 2022
Feed-Forward Latent Domain Adaptation
Feed-Forward Latent Domain Adaptation
Ondrej Bohdal
Da Li
S. Hu
Timothy M. Hospedales
OOD
41
1
0
15 Jul 2022
Contrastive Adapters for Foundation Model Group Robustness
Contrastive Adapters for Foundation Model Group Robustness
Michael Zhang
Christopher Ré
VLM
18
62
0
14 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
32
16
0
14 Jul 2022
Leakage and the Reproducibility Crisis in ML-based Science
Leakage and the Reproducibility Crisis in ML-based Science
Sayash Kapoor
Arvind Narayanan
25
177
0
14 Jul 2022
Repairing Neural Networks by Leaving the Right Past Behind
Repairing Neural Networks by Leaving the Right Past Behind
Ryutaro Tanno
Melanie F. Pradier
A. Nori
Yingzhen Li
KELM
33
31
0
11 Jul 2022
Back to the Source: Diffusion-Driven Test-Time Adaptation
Back to the Source: Diffusion-Driven Test-Time Adaptation
Jin Gao
Jialing Zhang
Xihui Liu
Trevor Darrell
Evan Shelhamer
Dequan Wang
TTA
13
51
0
07 Jul 2022
A simple normalization technique using window statistics to improve the
  out-of-distribution generalization on medical images
A simple normalization technique using window statistics to improve the out-of-distribution generalization on medical images
Chengfeng Zhou
Songchang Chen
Chenming Xu
Jun Wang
Feng Liu
Chun Zhang
Juan Ye
Hefeng Huang
Xiaobo Li
OOD
13
0
0
07 Jul 2022
Predicting is not Understanding: Recognizing and Addressing
  Underspecification in Machine Learning
Predicting is not Understanding: Recognizing and Addressing Underspecification in Machine Learning
Damien Teney
Maxime Peyrard
Ehsan Abbasnejad
38
29
0
06 Jul 2022
Generalization to translation shifts: a study in architectures and
  augmentations
Generalization to translation shifts: a study in architectures and augmentations
Suriya Gunasekar
13
1
0
05 Jul 2022
Predicting Out-of-Domain Generalization with Neighborhood Invariance
Predicting Out-of-Domain Generalization with Neighborhood Invariance
Nathan Ng
Neha Hulkund
Kyunghyun Cho
Marzyeh Ghassemi
OOD
27
4
0
05 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
129
32
0
04 Jul 2022
Counterbalancing Teacher: Regularizing Batch Normalized Models for
  Robustness
Counterbalancing Teacher: Regularizing Batch Normalized Models for Robustness
Saeid Asgari Taghanaki
A. Gholami
Fereshte Khani
Kristy Choi
Linh-Tam Tran
Ran Zhang
Aliasghar Khani
14
0
0
04 Jul 2022
Identifying the Context Shift between Test Benchmarks and Production
  Data
Identifying the Context Shift between Test Benchmarks and Production Data
Matthew Groh
OOD
21
8
0
03 Jul 2022
AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly
  Detection
AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection
Marius Dragoi
Elena Burceanu
Emanuela Haller
Andrei Manolache
Florin Brad
OOD
23
18
0
30 Jun 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
30
28
0
30 Jun 2022
Towards out of distribution generalization for problems in mechanics
Towards out of distribution generalization for problems in mechanics
Lingxiao Yuan
Harold S. Park
Emma Lejeune
OOD
AI4CE
36
17
0
29 Jun 2022
Distilling Model Failures as Directions in Latent Space
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
23
90
0
29 Jun 2022
Improved Text Classification via Test-Time Augmentation
Improved Text Classification via Test-Time Augmentation
H. Lu
Divya Shanmugam
Harini Suresh
John Guttag
ViT
33
11
0
27 Jun 2022
Agreement-on-the-Line: Predicting the Performance of Neural Networks
  under Distribution Shift
Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift
Christina Baek
Yiding Jiang
Aditi Raghunathan
Zico Kolter
32
79
0
27 Jun 2022
Monitoring Shortcut Learning using Mutual Information
Monitoring Shortcut Learning using Mutual Information
Mohammed Adnan
Yani Andrew Ioannou
Chuan-Yung Tsai
A. Galloway
H. R. Tizhoosh
Graham W. Taylor
25
6
0
27 Jun 2022
Transferring Fairness under Distribution Shifts via Fair Consistency
  Regularization
Transferring Fairness under Distribution Shifts via Fair Consistency Regularization
Bang An
Zora Che
Mucong Ding
Furong Huang
22
31
0
26 Jun 2022
Gated Domain Units for Multi-source Domain Generalization
Gated Domain Units for Multi-source Domain Generalization
Simon Foll
Alina Dubatovka
Eugen Ernst
Siu Lun Chau
Martin Maritsch
Patrik Okanovic
Gudrun Thater
J. M. Buhmann
Felix Wortmann
Krikamol Muandet
OOD
40
3
0
24 Jun 2022
Measuring Representational Robustness of Neural Networks Through Shared
  Invariances
Measuring Representational Robustness of Neural Networks Through Shared Invariances
Vedant Nanda
Till Speicher
Camila Kolling
John P. Dickerson
Krishna P. Gummadi
Adrian Weller
19
12
0
23 Jun 2022
Invariant Causal Mechanisms through Distribution Matching
Invariant Causal Mechanisms through Distribution Matching
Mathieu Chevalley
Charlotte Bunne
Andreas Krause
Stefan Bauer
OOD
CML
14
40
0
23 Jun 2022
Gradual Domain Adaptation via Normalizing Flows
Gradual Domain Adaptation via Normalizing Flows
Shogo Sagawa
H. Hino
CLL
OOD
22
10
0
23 Jun 2022
Test-time image-to-image translation ensembling improves
  out-of-distribution generalization in histopathology
Test-time image-to-image translation ensembling improves out-of-distribution generalization in histopathology
Marin Scalbert
Maria Vakalopoulou
Florent Couzinié-Devy
30
13
0
20 Jun 2022
Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the
  Research Manifold
Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold
Sebastian Ruder
Ivan Vulić
Anders Søgaard
41
29
0
20 Jun 2022
Adversarial Scrutiny of Evidentiary Statistical Software
Adversarial Scrutiny of Evidentiary Statistical Software
Rediet Abebe
Moritz Hardt
Angela Jin
John Miller
Ludwig Schmidt
Rebecca Wexler
36
5
0
19 Jun 2022
How Robust is Unsupervised Representation Learning to Distribution
  Shift?
How Robust is Unsupervised Representation Learning to Distribution Shift?
Yuge Shi
Imant Daunhawer
Julia E. Vogt
Philip Torr
Amartya Sanyal
OOD
35
25
0
17 Jun 2022
The Importance of Background Information for Out of Distribution
  Generalization
The Importance of Background Information for Out of Distribution Generalization
Jupinder Parmar
Khaled Kamal Saab
Brian Pogatchnik
D. Rubin
Christopher Ré
OOD
21
0
0
17 Jun 2022
GOOD: A Graph Out-of-Distribution Benchmark
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
33
116
0
16 Jun 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
Mihaly Petreczky
37
1
0
16 Jun 2022
Adapting Self-Supervised Vision Transformers by Probing
  Attention-Conditioned Masking Consistency
Adapting Self-Supervised Vision Transformers by Probing Attention-Conditioned Masking Consistency
Viraj Prabhu
Sriram Yenamandra
Aaditya K. Singh
Judy Hoffman
39
14
0
16 Jun 2022
Modeling the Data-Generating Process is Necessary for
  Out-of-Distribution Generalization
Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization
Jivat Neet Kaur
Emre Kıcıman
Amit Sharma
UQCV
OOD
28
25
0
15 Jun 2022
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization
  Dilemma in Out-of-Distribution Generalization
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
...
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
11
34
0
15 Jun 2022
Improving Diversity with Adversarially Learned Transformations for
  Domain Generalization
Improving Diversity with Adversarially Learned Transformations for Domain Generalization
Tejas Gokhale
Rushil Anirudh
Jayaraman J. Thiagarajan
B. Kailkhura
Chitta Baral
Yezhou Yang
27
28
0
15 Jun 2022
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
ABCinML: Anticipatory Bias Correction in Machine Learning Applications
Abdulaziz A. Almuzaini
C. Bhatt
David M. Pennock
V. Singh
FaML
30
10
0
14 Jun 2022
Learning towards Synchronous Network Memorizability and Generalizability
  for Continual Segmentation across Multiple Sites
Learning towards Synchronous Network Memorizability and Generalizability for Continual Segmentation across Multiple Sites
Jingyang Zhang
Peng Xue
Ran Gu
Yuning Gu
Mianxin Liu
Yongsheng Pan
Zhiming Cui
Jiawei Huang
Lei Ma
Dinggang Shen
CLL
27
8
0
14 Jun 2022
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Contrastive Learning for Unsupervised Domain Adaptation of Time Series
Yilmazcan Ozyurt
Stefan Feuerriegel
Ce Zhang
AI4TS
34
45
0
13 Jun 2022
CodeS: Towards Code Model Generalization Under Distribution Shift
CodeS: Towards Code Model Generalization Under Distribution Shift
Qiang Hu
Yuejun Guo
Xiaofei Xie
Maxime Cordy
Lei Ma
Mike Papadakis
Yves Le Traon
OOD
36
10
0
11 Jun 2022
Lost in Transmission: On the Impact of Networking Corruptions on Video
  Machine Learning Models
Lost in Transmission: On the Impact of Networking Corruptions on Video Machine Learning Models
Trenton Chang
Daniel Y. Fu
20
0
0
10 Jun 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
31
8
0
09 Jun 2022
How unfair is private learning ?
How unfair is private learning ?
Amartya Sanyal
Yaxian Hu
Fanny Yang
FaML
FedML
33
22
0
08 Jun 2022
Toward Certified Robustness Against Real-World Distribution Shifts
Toward Certified Robustness Against Real-World Distribution Shifts
Haoze Wu
Teruhiro Tagomori
Alexander Robey
Fengjun Yang
Nikolai Matni
George Pappas
Hamed Hassani
C. Păsăreanu
Clark W. Barrett
AAML
OOD
47
18
0
08 Jun 2022
Robust Calibration with Multi-domain Temperature Scaling
Robust Calibration with Multi-domain Temperature Scaling
Yaodong Yu
Stephen Bates
Yi Ma
Michael I. Jordan
OOD
UQCV
32
33
0
06 Jun 2022
AugLoss: A Robust Augmentation-based Fine Tuning Methodology
AugLoss: A Robust Augmentation-based Fine Tuning Methodology
Kyle Otstot
J. Cava
Tyler Sypherd
Lalitha Sankar
26
0
0
05 Jun 2022
(Im)possibility of Collective Intelligence
(Im)possibility of Collective Intelligence
Krikamol Muandet
30
6
0
05 Jun 2022
Previous
123...131415...171819
Next