ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06678
  4. Cited By
TabTransformer: Tabular Data Modeling Using Contextual Embeddings

TabTransformer: Tabular Data Modeling Using Contextual Embeddings

11 December 2020
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar S. Karnin
    ViT
    LMTD
ArXivPDFHTML

Papers citing "TabTransformer: Tabular Data Modeling Using Contextual Embeddings"

16 / 66 papers shown
Title
Optimizing a Digital Twin for Fault Diagnosis in Grid Connected
  Inverters -- A Bayesian Approach
Optimizing a Digital Twin for Fault Diagnosis in Grid Connected Inverters -- A Bayesian Approach
Pavol Mulinka
Subham S. Sahoo
Charalampos Kalalas
P. H. Nardelli
14
3
0
07 Dec 2022
T2G-Former: Organizing Tabular Features into Relation Graphs Promotes
  Heterogeneous Feature Interaction
T2G-Former: Organizing Tabular Features into Relation Graphs Promotes Heterogeneous Feature Interaction
Jiahuan Yan
Jintai Chen
YiXuan Wu
D. Z. Chen
Jian Wu
17
35
0
30 Nov 2022
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
24
22
0
23 Nov 2022
TabLLM: Few-shot Classification of Tabular Data with Large Language
  Models
TabLLM: Few-shot Classification of Tabular Data with Large Language Models
S. Hegselmann
Alejandro Buendia
Hunter Lang
Monica Agrawal
Xiaoyi Jiang
David Sontag
LMTD
46
210
0
19 Oct 2022
Why do tree-based models still outperform deep learning on tabular data?
Why do tree-based models still outperform deep learning on tabular data?
Léo Grinsztajn
Edouard Oyallon
Gaël Varoquaux
LMTD
22
355
0
18 Jul 2022
Revisiting Pretraining Objectives for Tabular Deep Learning
Revisiting Pretraining Objectives for Tabular Deep Learning
Ivan Rubachev
Artem Alekberov
Yu. V. Gorishniy
Artem Babenko
LMTD
21
41
0
07 Jul 2022
Transfer Learning with Deep Tabular Models
Transfer Learning with Deep Tabular Models
Roman Levin
Valeriia Cherepanova
Avi Schwarzschild
Arpit Bansal
C. B. Bruss
Tom Goldstein
A. Wilson
Micah Goldblum
OOD
FedML
LMTD
75
58
0
30 Jun 2022
TransTab: Learning Transferable Tabular Transformers Across Tables
TransTab: Learning Transferable Tabular Transformers Across Tables
Zifeng Wang
Jimeng Sun
LMTD
28
135
0
19 May 2022
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
13
155
0
10 Mar 2022
Generative Modeling of Complex Data
Generative Modeling of Complex Data
Luca Canale
Nicolas Grislain
Grégoire Lothe
Johanne Leduc
SyDa
10
4
0
04 Feb 2022
Bond Default Prediction with Text Embeddings, Undersampling and Deep
  Learning
Bond Default Prediction with Text Embeddings, Undersampling and Deep Learning
Luke Jordan
11
0
0
13 Oct 2021
Automated Essay Scoring Using Transformer Models
Automated Essay Scoring Using Transformer Models
Sabrina Ludwig
Christian W. F. Mayer
Christopher Hansen
Kerstin Eilers
Steffen Brandt
19
38
0
13 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
27
645
0
05 Oct 2021
LocalGLMnet: interpretable deep learning for tabular data
LocalGLMnet: interpretable deep learning for tabular data
Ronald Richman
M. Wüthrich
LMTD
FAtt
20
27
0
23 Jul 2021
Revisiting Deep Learning Models for Tabular Data
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
19
696
0
22 Jun 2021
DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction
DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
Zhenhua Dong
107
64
0
12 Apr 2018
Previous
12