ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.07035
11
0

Bond Default Prediction with Text Embeddings, Undersampling and Deep Learning

13 October 2021
Luke Jordan
ArXivPDFHTML
Abstract

The special and important problems of default prediction for municipal bonds are addressed using a combination of text embeddings from a pre-trained transformer network, a fully connected neural network, and synthetic oversampling. The combination of these techniques provides significant improvement in performance over human estimates, linear models, and boosted ensemble models, on data with extreme imbalance. Less than 0.2% of municipal bonds default, but our technique predicts 9 out of 10 defaults at the time of issue, without using bond ratings, at a cost of false positives on less than 0.1% non-defaulting bonds. The results hold the promise of reducing the cost of capital for local public goods, which are vital for society, and bring techniques previously used in personal credit and public equities (or national fixed income), as well as the current generation of embedding techniques, to sub-sovereign credit decisions.

View on arXiv
Comments on this paper