ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.06188
  4. Cited By
Recent Theoretical Advances in Non-Convex Optimization

Recent Theoretical Advances in Non-Convex Optimization

11 December 2020
Marina Danilova
Pavel Dvurechensky
Alexander Gasnikov
Eduard A. Gorbunov
Sergey Guminov
Dmitry Kamzolov
Innokentiy Shibaev
ArXivPDFHTML

Papers citing "Recent Theoretical Advances in Non-Convex Optimization"

11 / 11 papers shown
Title
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems
  with Convex Constraints
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
Hari Dahal
Wei Liu
Yangyang Xu
29
5
0
15 Nov 2023
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave
  Optimization
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
Mastane Achab
20
1
0
26 Sep 2023
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic
  Line Search
Learning-Rate-Free Learning: Dissecting D-Adaptation and Probabilistic Line Search
Max McGuinness
ODL
13
0
0
06 Aug 2023
Convergence of gradient descent for deep neural networks
Convergence of gradient descent for deep neural networks
S. Chatterjee
ODL
19
20
0
30 Mar 2022
Maximizing Communication Efficiency for Large-scale Training via 0/1
  Adam
Maximizing Communication Efficiency for Large-scale Training via 0/1 Adam
Yucheng Lu
Conglong Li
Minjia Zhang
Christopher De Sa
Yuxiong He
OffRL
AI4CE
22
20
0
12 Feb 2022
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
The Complexity of Nonconvex-Strongly-Concave Minimax Optimization
Siqi Zhang
Junchi Yang
Cristóbal Guzmán
Negar Kiyavash
Niao He
31
60
0
29 Mar 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
28
108
0
15 Feb 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
16
25
0
04 Jan 2021
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
42
52
0
12 Feb 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
76
317
0
18 Feb 2014
1