ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04474
  4. Cited By
Rotation-Invariant Autoencoders for Signals on Spheres

Rotation-Invariant Autoencoders for Signals on Spheres

8 December 2020
Suhas Lohit
Shubhendu Trivedi
    MDE
ArXivPDFHTML

Papers citing "Rotation-Invariant Autoencoders for Signals on Spheres"

29 / 29 papers shown
Title
Spin-Weighted Spherical CNNs
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
39
69
0
18 Jun 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
120
2,023
0
16 Apr 2020
Theoretical Aspects of Group Equivariant Neural Networks
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
27
41
0
10 Apr 2020
The general theory of permutation equivarant neural networks and higher
  order graph variational encoders
The general theory of permutation equivarant neural networks and higher order graph variational encoders
Erik H. Thiede
Truong-Son Hy
Risi Kondor
34
35
0
08 Apr 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
121
130
0
11 Mar 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
39
133
0
20 Feb 2020
Towards Learning Affine-Invariant Representations via Data-Efficient
  CNNs
Towards Learning Affine-Invariant Representations via Data-Efficient CNNs
Xenju Xu
Guanghui Wang
Alan Sullivan
Ziming Zhang
33
23
0
31 Aug 2019
Product of Orthogonal Spheres Parameterization for Disentangled
  Representation Learning
Product of Orthogonal Spheres Parameterization for Disentangled Representation Learning
Ankita Shukla
Sarthak Bhagat
Shagun Uppal
Saket Anand
Pavan Turaga
CML
OOD
DRL
29
23
0
22 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
132
2,190
0
05 Jul 2019
Temporal Transformer Networks: Joint Learning of Invariant and
  Discriminative Time Warping
Temporal Transformer Networks: Joint Learning of Invariant and Discriminative Time Warping
Suhas Lohit
Qiao Wang
Pavan Turaga
ViT
30
56
0
13 Jun 2019
Deep Scale-spaces: Equivariance Over Scale
Deep Scale-spaces: Equivariance Over Scale
Daniel E. Worrall
Max Welling
BDL
35
167
0
28 May 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
71
408
0
11 Feb 2019
Invariant and Equivariant Graph Networks
Invariant and Equivariant Graph Networks
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
46
498
0
24 Dec 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
65
267
0
24 Jun 2018
Deforming Autoencoders: Unsupervised Disentangling of Shape and
  Appearance
Deforming Autoencoders: Unsupervised Disentangling of Shape and Appearance
Zhixin Shu
M. Sahasrabudhe
R. Güler
Dimitris Samaras
Nikos Paragios
Iasonas Kokkinos
CVBM
91
201
0
18 Jun 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
77
496
0
11 Feb 2018
Spherical CNNs
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
98
898
0
30 Jan 2018
Covariant Compositional Networks For Learning Graphs
Covariant Compositional Networks For Learning Graphs
Risi Kondor
H. Son
Horace Pan
Brandon M. Anderson
Shubhendu Trivedi
GNN
48
167
0
07 Jan 2018
Learning Steerable Filters for Rotation Equivariant CNNs
Learning Steerable Filters for Rotation Equivariant CNNs
Maurice Weiler
Fred Hamprecht
M. Storath
55
386
0
20 Nov 2017
Learning SO(3) Equivariant Representations with Spherical CNNs
Learning SO(3) Equivariant Representations with Spherical CNNs
Carlos Esteves
Christine Allen-Blanchette
A. Makadia
Kostas Daniilidis
82
510
0
17 Nov 2017
Dynamic Routing Between Capsules
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
49
4,584
0
26 Oct 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
163
2,441
0
10 Mar 2017
Harmonic Networks: Deep Translation and Rotation Equivariance
Harmonic Networks: Deep Translation and Rotation Equivariance
Daniel E. Worrall
Stephan J. Garbin
Daniyar Turmukhambetov
Gabriel J. Brostow
91
705
0
14 Dec 2016
Understanding How Image Quality Affects Deep Neural Networks
Understanding How Image Quality Affects Deep Neural Networks
Samuel F. Dodge
Lina Karam
VLM
42
725
0
14 Apr 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
96
1,917
0
24 Feb 2016
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
240
7,361
0
05 Jun 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRL
BDL
71
929
0
11 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
316
149,474
0
22 Dec 2014
Scale-Invariant Convolutional Neural Networks
Scale-Invariant Convolutional Neural Networks
Yichong Xu
Tianjun Xiao
Jiaxing Zhang
Kuiyuan Yang
Zheng Zhang
61
138
0
24 Nov 2014
1