ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.04171
  4. Cited By
Sparse encoding for more-interpretable feature-selecting representations
  in probabilistic matrix factorization

Sparse encoding for more-interpretable feature-selecting representations in probabilistic matrix factorization

8 December 2020
Joshua C. Chang
P. Fletcher
Ju Han
Ted L.Chang
Shashaank Vattikuti
Bart Desmet
Ayah Zirikly
Carson C. Chow
ArXivPDFHTML

Papers citing "Sparse encoding for more-interpretable feature-selecting representations in probabilistic matrix factorization"

17 / 17 papers shown
Title
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing
  Abnormalities in Medical Imaging
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging
N. Arun
N. Gaw
P. Singh
Ken Chang
M. Aggarwal
...
J. Patel
M. Gidwani
Julius Adebayo
M. D. Li
Jayashree Kalpathy-Cramer
FAtt
45
110
0
06 Aug 2020
Probabilistically-autoencoded horseshoe-disentangled multidomain
  item-response theory models
Probabilistically-autoencoded horseshoe-disentangled multidomain item-response theory models
Joshua C. Chang
Shashaank Vattikuti
Carson C. Chow
21
6
0
05 Dec 2019
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
  Methods
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
59
813
0
06 Nov 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual
  Explanations
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
40
196
0
22 Jul 2019
Lookahead Optimizer: k steps forward, 1 step back
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
91
725
0
19 Jul 2019
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDL
UQCV
34
77
0
13 Jun 2018
Interpretable VAEs for nonlinear group factor analysis
Interpretable VAEs for nonlinear group factor analysis
Samuel K. Ainsworth
N. Foti
Adrian K. C. Lee
E. Fox
OOD
DRL
90
19
0
17 Feb 2018
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
87
349
0
28 Nov 2017
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
58
119
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
107
479
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GAN
BDL
55
628
0
19 May 2017
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
73
711
0
02 Mar 2016
A simple sampler for the horseshoe estimator
A simple sampler for the horseshoe estimator
E. Makalic
Daniel F. Schmidt
34
233
0
17 Aug 2015
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
66
4,014
0
16 Jul 2015
Comparison of Bayesian predictive methods for model selection
Comparison of Bayesian predictive methods for model selection
Juho Piironen
Aki Vehtari
58
280
0
30 Mar 2015
The Horseshoe+ Estimator of Ultra-Sparse Signals
The Horseshoe+ Estimator of Ultra-Sparse Signals
A. Bhadra
J. Datta
Nicholas G. Polson
Brandon T. Willard
60
163
0
02 Feb 2015
Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable
  Information Criterion in Singular Learning Theory
Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory
Sumio Watanabe
111
2,377
0
14 Apr 2010
1