Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2012.01685
Cited By
Cross-Loss Influence Functions to Explain Deep Network Representations
3 December 2020
Andrew Silva
Rohit Chopra
Matthew C. Gombolay
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cross-Loss Influence Functions to Explain Deep Network Representations"
10 / 10 papers shown
Title
Detecting Instruction Fine-tuning Attack on Language Models with Influence Function
Jiawei Li
TDI
AAML
33
0
0
12 Apr 2025
How Video Meetings Change Your Expression
Sumit Sarin
Utkarsh Mall
Purva Tendulkar
Carl Vondrick
CVBM
32
0
0
03 Jun 2024
Evolving Interpretable Visual Classifiers with Large Language Models
Mia Chiquier
Utkarsh Mall
Carl Vondrick
VLM
28
10
0
15 Apr 2024
Towards Explainable Artificial Intelligence (XAI): A Data Mining Perspective
Haoyi Xiong
Xuhong Li
Xiaofei Zhang
Jiamin Chen
Xinhao Sun
Yuchen Li
Zeyi Sun
Mengnan Du
XAI
37
8
0
09 Jan 2024
Sample based Explanations via Generalized Representers
Che-Ping Tsai
Chih-Kuan Yeh
Pradeep Ravikumar
FAtt
39
8
0
27 Oct 2023
Addressing Selection Bias in Computerized Adaptive Testing: A User-Wise Aggregate Influence Function Approach
Soonwoo Kwon
Sojung Kim
S. Lee
Jin-Young Kim
Suyeong An
Kyuseok Kim
14
3
0
23 Aug 2023
Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
Stella Biderman
Hailey Schoelkopf
Quentin G. Anthony
Herbie Bradley
Kyle O'Brien
...
USVSN Sai Prashanth
Edward Raff
Aviya Skowron
Lintang Sutawika
Oskar van der Wal
30
1,165
0
03 Apr 2023
Towards Reconciling Usability and Usefulness of Explainable AI Methodologies
Pradyumna Tambwekar
Matthew C. Gombolay
28
8
0
13 Jan 2023
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
233
31,253
0
16 Jan 2013
1