ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.09026
42
0

Detecting Instruction Fine-tuning Attack on Language Models with Influence Function

12 April 2025
Jiawei Li
    TDI
    AAML
ArXivPDFHTML
Abstract

Instruction fine-tuning attacks pose a significant threat to large language models (LLMs) by subtly embedding poisoned data in fine-tuning datasets, which can trigger harmful or unintended responses across a range of tasks. This undermines model alignment and poses security risks in real-world deployment. In this work, we present a simple and effective approach to detect and mitigate such attacks using influence functions, a classical statistical tool adapted for machine learning interpretation. Traditionally, the high computational costs of influence functions have limited their application to large models and datasets. The recent Eigenvalue-Corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation method enables efficient influence score computation, making it feasible for large-scale analysis.We are the first to apply influence functions for detecting language model instruction fine-tuning attacks on large-scale datasets, as both the instruction fine-tuning attack on language models and the influence calculation approximation technique are relatively new. Our large-scale empirical evaluation of influence functions on 50,000 fine-tuning examples and 32 tasks reveals a strong association between influence scores and sentiment. Building on this, we introduce a novel sentiment transformation combined with influence functions to detect and remove critical poisons -- poisoned data points that skew model predictions. Removing these poisons (only 1% of total data) recovers model performance to near-clean levels, demonstrating the effectiveness and efficiency of our approach. Artifact is available atthis https URL.WARNING: This paper contains offensive data examples.

View on arXiv
@article{li2025_2504.09026,
  title={ Detecting Instruction Fine-tuning Attack on Language Models with Influence Function },
  author={ Jiawei Li },
  journal={arXiv preprint arXiv:2504.09026},
  year={ 2025 }
}
Comments on this paper