ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.00123
  4. Cited By
A Hypergradient Approach to Robust Regression without Correspondence
v1v2 (latest)

A Hypergradient Approach to Robust Regression without Correspondence

30 November 2020
Yujia Xie
Yongyi Mao
Simiao Zuo
Hongteng Xu
X. Ye
T. Zhao
H. Zha
ArXiv (abs)PDFHTML

Papers citing "A Hypergradient Approach to Robust Regression without Correspondence"

26 / 26 papers shown
Title
MOT20: A benchmark for multi object tracking in crowded scenes
MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer
Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixé
VOT
238
655
0
19 Mar 2020
Linear Regression without Correspondences via Concave Minimization
Linear Regression without Correspondences via Concave Minimization
Liangzu Peng
M. Tsakiris
44
30
0
17 Mar 2020
Differentiable Top-k Operator with Optimal Transport
Differentiable Top-k Operator with Optimal Transport
Yujia Xie
H. Dai
Minshuo Chen
Bo Dai
T. Zhao
H. Zha
Wei Wei
Tomas Pfister
OT
58
27
0
16 Feb 2020
A Two-Stage Approach to Multivariate Linear Regression with Sparsely
  Mismatched Data
A Two-Stage Approach to Multivariate Linear Regression with Sparsely Mismatched Data
M. Slawski
E. Ben-David
Ping Li
64
45
0
16 Jul 2019
How To Train Your Deep Multi-Object Tracker
How To Train Your Deep Multi-Object Tracker
Yihong Xu
Aljosa Osep
Yutong Ban
Radu Horaud
Laura Leal-Taixe
Xavier Alameda-Pineda
VOT
94
192
0
15 Jun 2019
Convergence of Learning Dynamics in Stackelberg Games
Convergence of Learning Dynamics in Stackelberg Games
Tanner Fiez
Benjamin J. Chasnov
Lillian J. Ratliff
50
92
0
04 Jun 2019
Robust approximate linear regression without correspondence
Robust approximate linear regression without correspondence
Amin Nejatbakhsh
E. Varol
118
5
0
01 Jun 2019
Sliced Gromov-Wasserstein
Sliced Gromov-Wasserstein
Titouan Vayer
Rémi Flamary
Romain Tavenard
Laetitia Chapel
Nicolas Courty
OT
52
100
0
24 May 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
92
260
0
17 Jan 2019
An algebraic-geometric approach for linear regression without
  correspondences
An algebraic-geometric approach for linear regression without correspondences
M. Tsakiris
Liangzu Peng
A. Conca
L. Kneip
Yuanming Shi
Hayoung Choi
93
18
0
12 Oct 2018
Tracking by Animation: Unsupervised Learning of Multi-Object Attentive
  Trackers
Tracking by Animation: Unsupervised Learning of Multi-Object Attentive Trackers
Zhen He
Jian Li
Daxue Liu
Hangen He
David Barber
VOT
51
54
0
10 Sep 2018
Uncoupled isotonic regression via minimum Wasserstein deconvolution
Uncoupled isotonic regression via minimum Wasserstein deconvolution
Philippe Rigollet
Jonathan Niles-Weed
66
64
0
27 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
67
131
0
30 May 2018
Linear Regression with Sparsely Permuted Data
Linear Regression with Sparsely Permuted Data
M. Slawski
E. Ben-David
87
73
0
16 Oct 2017
Linear regression without correspondence
Linear regression without correspondence
Daniel J. Hsu
K. Shi
Xiaorui Sun
82
82
0
19 May 2017
Linear Regression with Shuffled Labels
Linear Regression with Shuffled Labels
Abubakar Abid
Ada Poon
James Zou
124
66
0
03 May 2017
Denoising Linear Models with Permuted Data
Denoising Linear Models with Permuted Data
A. Pananjady
Martin J. Wainwright
T. Courtade
105
73
0
24 Apr 2017
Signal Recovery from Unlabeled Samples
Signal Recovery from Unlabeled Samples
Saeid Haghighatshoar
Giuseppe Caire
97
52
0
30 Jan 2017
Performance Measures and a Data Set for Multi-Target, Multi-Camera
  Tracking
Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking
Ergys Ristani
Francesco Solera
Roger S. Zou
Rita Cucchiara
Carlo Tomasi
88
2,616
0
06 Sep 2016
Linear Regression with an Unknown Permutation: Statistical and
  Computational Limits
Linear Regression with an Unknown Permutation: Statistical and Computational Limits
A. Pananjady
Martin J. Wainwright
T. Courtade
63
47
0
09 Aug 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,224
0
15 Jun 2016
MOT16: A Benchmark for Multi-Object Tracking
MOT16: A Benchmark for Multi-Object Tracking
Anton Milan
Laura Leal-Taixe
Ian Reid
Stefan Roth
Konrad Schindler
VOT
146
1,807
0
02 Mar 2016
Simple Online and Realtime Tracking
Simple Online and Realtime Tracking
Alex Bewley
Zongyuan Ge
Lionel Ott
F. Ramos
B. Upcroft
VOT
86
3,102
0
02 Feb 2016
Random Multi-Constraint Projection: Stochastic Gradient Methods for
  Convex Optimization with Many Constraints
Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints
Mengdi Wang
Yichen Chen
Jialin Liu
Yuantao Gu
39
24
0
12 Nov 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
520
62,360
0
04 Jun 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
215
4,277
0
04 Jun 2013
1