Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.14779
Cited By
Data-Free Model Extraction
30 November 2020
Jean-Baptiste Truong
Pratyush Maini
R. Walls
Nicolas Papernot
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data-Free Model Extraction"
40 / 40 papers shown
Title
RADEP: A Resilient Adaptive Defense Framework Against Model Extraction Attacks
Amit Chakraborty
Sayyed Farid Ahamed
Sandip Roy
S. Banerjee
Kevin Choi
A. Rahman
Alison Hu
Edward Bowen
Sachin Shetty
AAML
14
0
0
25 May 2025
Examining the Threat Landscape: Foundation Models and Model Stealing
Ankita Raj
Deepankar Varma
Chetan Arora
AAML
161
1
0
25 Feb 2025
Neural Honeytrace: A Robust Plug-and-Play Watermarking Framework against Model Extraction Attacks
Yixiao Xu
Binxing Fang
Rui Wang
Yinghai Zhou
S. Ji
Yuan Liu
Mohan Li
AAML
MIACV
87
0
0
16 Jan 2025
Sample Correlation for Fingerprinting Deep Face Recognition
Jiyang Guan
Jian Liang
Yanbo Wang
Ran He
AAML
88
0
0
31 Dec 2024
Pre-trained Encoder Inference: Revealing Upstream Encoders In Downstream Machine Learning Services
Shaopeng Fu
Xuexue Sun
Ke Qing
Tianhang Zheng
Di Wang
AAML
MIACV
SILM
85
0
0
05 Aug 2024
Locking Machine Learning Models into Hardware
Eleanor Clifford
Adhithya Saravanan
Harry Langford
Cheng Zhang
Yiren Zhao
Robert D. Mullins
Ilia Shumailov
Jamie Hayes
55
0
0
31 May 2024
Learning to Learn from APIs: Black-Box Data-Free Meta-Learning
Zixuan Hu
Li Shen
Zhenyi Wang
Baoyuan Wu
Chun Yuan
Dacheng Tao
74
7
0
28 May 2023
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
234
40,217
0
22 Oct 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
55
227
0
11 Jun 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
44
2,907
0
09 Jun 2020
Sponge Examples: Energy-Latency Attacks on Neural Networks
Ilia Shumailov
Yiren Zhao
Daniel Bates
Nicolas Papernot
Robert D. Mullins
Ross J. Anderson
SILM
33
129
0
05 Jun 2020
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
432
41,106
0
28 May 2020
Data-Free Network Quantization With Adversarial Knowledge Distillation
Yoojin Choi
Jihwan P. Choi
Mostafa El-Khamy
Jungwon Lee
MQ
35
120
0
08 May 2020
MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation
Sanjay Kariyappa
A. Prakash
Moinuddin K. Qureshi
AAML
43
148
0
06 May 2020
Data-Free Adversarial Distillation
Gongfan Fang
Mingli Song
Chengchao Shen
Xinchao Wang
Da Chen
Xiuming Zhang
29
146
0
23 Dec 2019
On the Efficacy of Knowledge Distillation
Ligang He
Rui Mao
68
603
0
03 Oct 2019
High Accuracy and High Fidelity Extraction of Neural Networks
Matthew Jagielski
Nicholas Carlini
David Berthelot
Alexey Kurakin
Nicolas Papernot
MLAU
MIACV
65
377
0
03 Sep 2019
Energy and Policy Considerations for Deep Learning in NLP
Emma Strubell
Ananya Ganesh
Andrew McCallum
43
2,633
0
05 Jun 2019
Zero-shot Knowledge Transfer via Adversarial Belief Matching
P. Micaelli
Amos Storkey
21
228
0
23 May 2019
A framework for the extraction of Deep Neural Networks by leveraging public data
Soham Pal
Yash Gupta
Aditya Shukla
Aditya Kanade
S. Shevade
V. Ganapathy
FedML
MLAU
MIACV
52
56
0
22 May 2019
Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation
Linfeng Zhang
Jiebo Song
Anni Gao
Jingwei Chen
Chenglong Bao
Kaisheng Ma
FedML
45
852
0
17 May 2019
Knockoff Nets: Stealing Functionality of Black-Box Models
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
MLAU
57
531
0
06 Dec 2018
Exploring Connections Between Active Learning and Model Extraction
Varun Chandrasekaran
Kamalika Chaudhuri
Irene Giacomelli
Shane Walker
Songbai Yan
MIACV
119
158
0
05 Nov 2018
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
36
177
0
13 Jul 2018
Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data
Jacson Rodrigues Correia-Silva
Rodrigo Berriel
C. Badue
Alberto F. de Souza
Thiago Oliveira-Santos
MLAU
51
174
0
14 Jun 2018
Knowledge Distillation by On-the-Fly Native Ensemble
Xu Lan
Xiatian Zhu
S. Gong
262
475
0
12 Jun 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
62
396
0
30 May 2018
Stochastic Zeroth-order Optimization in High Dimensions
Yining Wang
S. Du
Sivaraman Balakrishnan
Aarti Singh
46
105
0
29 Oct 2017
Data-Free Knowledge Distillation for Deep Neural Networks
Raphael Gontijo-Lopes
Stefano Fenu
Thad Starner
34
271
0
19 Oct 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
46
1,864
0
14 Aug 2017
Deep Mutual Learning
Ying Zhang
Tao Xiang
Timothy M. Hospedales
Huchuan Lu
FedML
102
1,645
0
01 Jun 2017
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
68
2,102
0
17 Jan 2017
Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
Sergey Zagoruyko
N. Komodakis
92
2,561
0
12 Dec 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
66
1,798
0
09 Sep 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
346
8,999
0
10 Jun 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
38
3,656
0
08 Feb 2016
Cyclical Learning Rates for Training Neural Networks
L. Smith
ODL
106
2,515
0
03 Jun 2015
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
169
19,448
0
09 Mar 2015
FitNets: Hints for Thin Deep Nets
Adriana Romero
Nicolas Ballas
Samira Ebrahimi Kahou
Antoine Chassang
C. Gatta
Yoshua Bengio
FedML
214
3,862
0
19 Dec 2014
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
135
2,114
0
21 Dec 2013
1