ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.01348
19
598

On the Efficacy of Knowledge Distillation

3 October 2019
Ligang He
Rui Mao
ArXivPDFHTML
Abstract

In this paper, we present a thorough evaluation of the efficacy of knowledge distillation and its dependence on student and teacher architectures. Starting with the observation that more accurate teachers often don't make good teachers, we attempt to tease apart the factors that affect knowledge distillation performance. We find crucially that larger models do not often make better teachers. We show that this is a consequence of mismatched capacity, and that small students are unable to mimic large teachers. We find typical ways of circumventing this (such as performing a sequence of knowledge distillation steps) to be ineffective. Finally, we show that this effect can be mitigated by stopping the teacher's training early. Our results generalize across datasets and models.

View on arXiv
Comments on this paper