Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.06169
Cited By
Robust and Stable Black Box Explanations
12 November 2020
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust and Stable Black Box Explanations"
47 / 47 papers shown
Title
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
100
1
0
13 Mar 2025
Interpretable Model Drift Detection
Pranoy Panda
Kancheti Sai Srinivas
V. Balasubramanian
Gaurav Sinha
70
0
0
09 Mar 2025
An Evaluation of Explanation Methods for Black-Box Detectors of Machine-Generated Text
Loris Schoenegger
Yuxi Xia
Benjamin Roth
FAtt
38
0
0
26 Aug 2024
On the Robustness of Global Feature Effect Explanations
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
23
2
0
13 Jun 2024
Robust Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
23
0
0
03 May 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
56
2
0
25 Apr 2024
Revealing Vulnerabilities of Neural Networks in Parameter Learning and Defense Against Explanation-Aware Backdoors
Md Abdul Kadir
G. Addluri
Daniel Sonntag
AAML
44
0
0
25 Mar 2024
X Hacking: The Threat of Misguided AutoML
Rahul Sharma
Sergey Redyuk
Sumantrak Mukherjee
Andrea Sipka
Sebastian Vollmer
David Selby
26
2
0
16 Jan 2024
Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks
Tanmay Garg
Deepika Vemuri
Vineeth N. Balasubramanian
GAN
11
2
0
09 Jan 2024
Rethinking Robustness of Model Attributions
Sandesh Kamath
Sankalp Mittal
Amit Deshpande
Vineeth N. Balasubramanian
20
2
0
16 Dec 2023
How Well Do Feature-Additive Explainers Explain Feature-Additive Predictors?
Zachariah Carmichael
Walter J. Scheirer
FAtt
36
4
0
27 Oct 2023
Confident Feature Ranking
Bitya Neuhof
Y. Benjamini
FAtt
19
3
0
28 Jul 2023
Explainable AI using expressive Boolean formulas
G. Rosenberg
J. K. Brubaker
M. Schuetz
Grant Salton
Zhihuai Zhu
E. Zhu
Serdar Kadioğlu
S. E. Borujeni
H. Katzgraber
25
8
0
06 Jun 2023
Adversarial attacks and defenses in explainable artificial intelligence: A survey
Hubert Baniecki
P. Biecek
AAML
42
63
0
06 Jun 2023
Post Hoc Explanations of Language Models Can Improve Language Models
Satyapriya Krishna
Jiaqi Ma
Dylan Slack
Asma Ghandeharioun
Sameer Singh
Himabindu Lakkaraju
ReLM
LRM
18
53
0
19 May 2023
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
21
17
0
16 Dec 2022
Understanding and Enhancing Robustness of Concept-based Models
Sanchit Sinha
Mengdi Huai
Jianhui Sun
Aidong Zhang
AAML
25
18
0
29 Nov 2022
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
19
10
0
17 Oct 2022
Inferring Sensitive Attributes from Model Explanations
Vasisht Duddu
A. Boutet
MIACV
SILM
17
16
0
21 Aug 2022
A Query-Optimal Algorithm for Finding Counterfactuals
Guy Blanc
Caleb M. Koch
Jane Lange
Li-Yang Tan
8
4
0
14 Jul 2022
Explaining the root causes of unit-level changes
Kailash Budhathoki
George Michailidis
Dominik Janzing
FAtt
23
4
0
26 Jun 2022
Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction Functions
Zulqarnain Khan
Davin Hill
A. Masoomi
Joshua Bone
Jennifer Dy
AAML
36
3
0
24 Jun 2022
An empirical study of the effect of background data size on the stability of SHapley Additive exPlanations (SHAP) for deep learning models
Han Yuan
Mingxuan Liu
Lican Kang
Chenkui Miao
Ying Wu
FAtt
11
8
0
24 Apr 2022
Framework for Evaluating Faithfulness of Local Explanations
S. Dasgupta
Nave Frost
Michal Moshkovitz
FAtt
111
61
0
01 Feb 2022
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
K. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
7
4
0
28 Jan 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
26
395
0
20 Jan 2022
Provably efficient, succinct, and precise explanations
Guy Blanc
Jane Lange
Li-Yang Tan
FAtt
24
35
0
01 Nov 2021
A Survey on the Robustness of Feature Importance and Counterfactual Explanations
Saumitra Mishra
Sanghamitra Dutta
Jason Long
Daniele Magazzeni
AAML
9
58
0
30 Oct 2021
Making Corgis Important for Honeycomb Classification: Adversarial Attacks on Concept-based Explainability Tools
Davis Brown
Henry Kvinge
AAML
37
7
0
14 Oct 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
38
5
0
15 Sep 2021
A Framework for Learning Ante-hoc Explainable Models via Concepts
Anirban Sarkar
Deepak Vijaykeerthy
Anindya Sarkar
V. Balasubramanian
LRM
BDL
14
46
0
25 Aug 2021
Perturbing Inputs for Fragile Interpretations in Deep Natural Language Processing
Sanchit Sinha
Hanjie Chen
Arshdeep Sekhon
Yangfeng Ji
Yanjun Qi
AAML
FAtt
14
42
0
11 Aug 2021
Extending LIME for Business Process Automation
Sohini Upadhyay
Vatche Isahagian
Vinod Muthusamy
Yara Rizk
FAtt
8
4
0
09 Aug 2021
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods
Chirag Agarwal
Marinka Zitnik
Himabindu Lakkaraju
19
51
0
16 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
19
31
0
09 Jun 2021
On the Lack of Robust Interpretability of Neural Text Classifiers
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
K. Kenthapadi
AAML
11
21
0
08 Jun 2021
Evaluating Local Explanations using White-box Models
Amir Hossein Akhavan Rahnama
Judith Butepage
Pierre Geurts
Henrik Bostrom
FAtt
17
0
0
04 Jun 2021
Towards Robust and Reliable Algorithmic Recourse
Sohini Upadhyay
Shalmali Joshi
Himabindu Lakkaraju
22
108
0
26 Feb 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Attribution Mask: Filtering Out Irrelevant Features By Recursively Focusing Attention on Inputs of DNNs
Jaehwan Lee
Joon‐Hyuk Chang
TDI
FAtt
19
0
0
15 Feb 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
25
22
0
14 Feb 2021
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
15
62
0
18 Dec 2020
Learning Models for Actionable Recourse
Alexis Ross
Himabindu Lakkaraju
Osbert Bastani
FaML
29
19
0
12 Nov 2020
A Framework to Learn with Interpretation
Jayneel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
AI4CE
FAtt
14
30
0
19 Oct 2020
Counterfactual Explanations for Machine Learning on Multivariate Time Series Data
E. Ates
Burak Aksar
V. Leung
A. Coskun
AI4TS
48
65
0
25 Aug 2020
The best way to select features?
Xin Man
Ernest P. Chan
14
60
0
26 May 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1