ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.05836
  4. Cited By
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference

Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference

11 November 2020
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
ArXivPDFHTML

Papers citing "Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference"

15 / 15 papers shown
Title
Simulation-based Inference for Cardiovascular Models
Simulation-based Inference for Cardiovascular Models
Antoine Wehenkel
Laura Manduchi
Jens Behrmann
Guillermo Sapiro
Andrew C. Miller
Marco Cuturi
Ozan Sener
Marco Cuturi
J. Jacobsen
106
9
0
31 Dec 2024
Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac
  Biomarkers
Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers
Laura Manduchi
Antoine Wehenkel
Jens Behrmann
Luca Pegolotti
Andy C. Miller
Ozan Sener
Marco Cuturi
Guillermo Sapiro
J. Jacobsen
OOD
50
1
0
23 Dec 2024
Generative Unfolding with Distribution Mapping
Generative Unfolding with Distribution Mapping
A. Butter
S. Diefenbacher
Nathan Huetsch
Vinicius Mikuni
Benjamin Nachman
Sofia Palacios Schweitzer
Tilman Plehn
DiffM
41
1
0
04 Nov 2024
Predictive variational inference: Learn the predictively optimal posterior distribution
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
31
0
0
18 Oct 2024
Neural-g: A Deep Learning Framework for Mixing Density Estimation
Neural-g: A Deep Learning Framework for Mixing Density Estimation
Shijie Wang
Saptarshi Chakraborty
Qian Qin
Ray Bai
BDL
33
0
0
10 Jun 2024
Learning Diffusion Priors from Observations by Expectation Maximization
Learning Diffusion Priors from Observations by Expectation Maximization
François Rozet
Gérome Andry
F. Lanusse
Gilles Louppe
DiffM
45
15
0
22 May 2024
The Landscape of Unfolding with Machine Learning
The Landscape of Unfolding with Machine Learning
Nathan Huetsch
Javier Marino Villadamigo
Alexander Shmakov
S. Diefenbacher
Vinicius Mikuni
...
Kevin Greif
Benjamin Nachman
D. Whiteson
A. Butter
Tilman Plehn
40
17
0
29 Apr 2024
Unifying Simulation and Inference with Normalizing Flows
Unifying Simulation and Inference with Normalizing Flows
Haoxing Du
Claudius Krause
Vinicius Mikuni
Benjamin Nachman
Ian Pang
David Shih
42
3
0
29 Apr 2024
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
Julius Vetter
Guy Moss
Cornelius Schroder
Richard Gao
Jakob H. Macke
37
3
0
12 Feb 2024
Designing Observables for Measurements with Deep Learning
Designing Observables for Measurements with Deep Learning
Owen Long
Benjamin Nachman
OOD
13
1
0
12 Oct 2023
Discriminative calibration: Check Bayesian computation from simulations
  and flexible classifier
Discriminative calibration: Check Bayesian computation from simulations and flexible classifier
Yuling Yao
Justin Domke
UQLM
22
2
0
24 May 2023
Unbinned Profiled Unfolding
Unbinned Profiled Unfolding
Jay Chan
Benjamin Nachman
16
7
0
10 Feb 2023
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational
  Wave Population Study
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
David Ruhe
Kaze W. K. Wong
M. Cranmer
Patrick Forré
16
6
0
15 Nov 2022
New directions for surrogate models and differentiable programming for
  High Energy Physics detector simulation
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation
Andreas Adelmann
W. Hopkins
E. Kourlitis
Michael Kagan
Gregor Kasieczka
...
David Shih
Vinicius Mikuni
Benjamin Nachman
K. Pedro
D. Winklehner
21
29
0
15 Mar 2022
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
24
176
0
02 Feb 2021
1