Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2011.01625
Cited By
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
3 November 2020
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAtt
TDI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models"
27 / 77 papers shown
Title
Explaining the root causes of unit-level changes
Kailash Budhathoki
George Michailidis
Dominik Janzing
FAtt
33
4
0
26 Jun 2022
Explaining Preferences with Shapley Values
Robert Hu
Siu Lun Chau
Jaime Ferrando Huertas
Dino Sejdinovic
TDI
FAtt
18
6
0
26 May 2022
The Shapley Value in Machine Learning
Benedek Rozemberczki
Lauren Watson
Péter Bayer
Hao-Tsung Yang
Oliver Kiss
Sebastian Nilsson
Rik Sarkar
TDI
FAtt
32
205
0
11 Feb 2022
Locally Invariant Explanations: Towards Stable and Unidirectional Explanations through Local Invariant Learning
Amit Dhurandhar
Karthikeyan N. Ramamurthy
Kartik Ahuja
Vijay Arya
FAtt
30
4
0
28 Jan 2022
From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI
Meike Nauta
Jan Trienes
Shreyasi Pathak
Elisa Nguyen
Michelle Peters
Yasmin Schmitt
Jorg Schlotterer
M. V. Keulen
C. Seifert
ELM
XAI
33
399
0
20 Jan 2022
Socioeconomic disparities and COVID-19: the causal connections
Tannista Banerjee
Ayan Paul
Vishak Srikanth
Inga Strümke
24
2
0
18 Jan 2022
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
Lars Henry Berge Olsen
I. Glad
Martin Jullum
K. Aas
TDI
FAtt
32
17
0
26 Nov 2021
Defining and Quantifying the Emergence of Sparse Concepts in DNNs
Jie Ren
Mingjie Li
Qirui Chen
Huiqi Deng
Quanshi Zhang
23
31
0
11 Nov 2021
Causal versus Marginal Shapley Values for Robotic Lever Manipulation Controlled using Deep Reinforcement Learning
Sindre Benjamin Remman
Inga Strümke
A. Lekkas
CML
19
7
0
04 Nov 2021
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
26
16
0
18 Oct 2021
Explaining Algorithmic Fairness Through Fairness-Aware Causal Path Decomposition
Weishen Pan
Sen Cui
Jiang Bian
Changshui Zhang
Fei Wang
CML
FaML
27
33
0
11 Aug 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
39
65
0
23 Jun 2021
Rational Shapley Values
David S. Watson
23
20
0
18 Jun 2021
Decomposition of Global Feature Importance into Direct and Associative Components (DEDACT)
Gunnar Konig
Timo Freiesleben
B. Bischl
Giuseppe Casalicchio
Moritz Grosse-Wentrup
FAtt
18
4
0
15 Jun 2021
Local Explanation of Dialogue Response Generation
Yi-Lin Tuan
Connor Pryor
Wenhu Chen
Lise Getoor
Wenjie Wang
27
11
0
11 Jun 2021
Accurate Shapley Values for explaining tree-based models
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
TDI
FAtt
16
13
0
07 Jun 2021
Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning
Jiahui Li
Kun Kuang
Baoxiang Wang
Furui Liu
Long Chen
Fei Wu
Jun Xiao
OffRL
27
60
0
01 Jun 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
40
32
0
25 May 2021
Explaining a Series of Models by Propagating Shapley Values
Hugh Chen
Scott M. Lundberg
Su-In Lee
TDI
FAtt
29
123
0
30 Apr 2021
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
22
63
0
27 Mar 2021
The Shapley Value of coalition of variables provides better explanations
Salim I. Amoukou
Nicolas Brunel
Tangi Salaun
FAtt
TDI
27
5
0
24 Mar 2021
Local Interpretations for Explainable Natural Language Processing: A Survey
Siwen Luo
Hamish Ivison
S. Han
Josiah Poon
MILM
48
48
0
20 Mar 2021
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
148
665
0
28 Dec 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
53
243
0
21 Nov 2020
Shapley Flow: A Graph-based Approach to Interpreting Model Predictions
Jiaxuan Wang
Jenna Wiens
Scott M. Lundberg
FAtt
28
88
0
27 Oct 2020
Quantifying intrinsic causal contributions via structure preserving interventions
Dominik Janzing
Patrick Blobaum
Atalanti A. Mastakouri
P. M. Faller
Lenon Minorics
Kailash Budhathoki
CML
15
9
0
01 Jul 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
52
371
0
30 Apr 2020
Previous
1
2