ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.15110
  4. Cited By
Deep learning versus kernel learning: an empirical study of loss
  landscape geometry and the time evolution of the Neural Tangent Kernel

Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel

28 October 2020
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
ArXivPDFHTML

Papers citing "Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel"

10 / 60 papers shown
Title
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Analyzing Monotonic Linear Interpolation in Neural Network Loss
  Landscapes
Analyzing Monotonic Linear Interpolation in Neural Network Loss Landscapes
James Lucas
Juhan Bae
Michael Ruogu Zhang
Stanislav Fort
R. Zemel
Roger C. Grosse
MoMe
172
28
0
22 Apr 2021
Intraclass clustering: an implicit learning ability that regularizes
  DNNs
Intraclass clustering: an implicit learning ability that regularizes DNNs
Simon Carbonnelle
Christophe De Vleeschouwer
65
8
0
11 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell Wortsman
Maxwell Horton
Carlos Guestrin
Ali Farhadi
Mohammad Rastegari
UQCV
27
85
0
20 Feb 2021
Provable Generalization of SGD-trained Neural Networks of Any Width in
  the Presence of Adversarial Label Noise
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
70
19
0
04 Jan 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
107
77
0
08 Dec 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
  Regression and Infinitely Wide Neural Networks
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
34
181
0
23 Jun 2020
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
236
0
04 Mar 2020
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
312
2,896
0
15 Sep 2016
Previous
12