Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.15110
Cited By
Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel
28 October 2020
Stanislav Fort
Gintare Karolina Dziugaite
Mansheej Paul
Sepideh Kharaghani
Daniel M. Roy
Surya Ganguli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel"
50 / 60 papers shown
Title
Supervised Models Can Generalize Also When Trained on Random Labels
Oskar Allerbo
Thomas B. Schön
OOD
SSL
29
0
0
16 May 2025
Training NTK to Generalize with KARE
Johannes Schwab
Bryan Kelly
Semyon Malamud
Teng Andrea Xu
27
0
0
16 May 2025
The Comparability of Model Fusion to Measured Data in Confuser Rejection
Conor Flynn
Christopher Ebersole
Edmund Zelnio
44
0
0
01 May 2025
On the Cone Effect in the Learning Dynamics
Zhanpeng Zhou
Yongyi Yang
Jie Ren
Mahito Sugiyama
Junchi Yan
60
0
0
20 Mar 2025
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
87
0
0
13 Mar 2025
SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting
Linqi Yang
Xiongwei Zhao
Qihao Sun
Ke Wang
Ao Chen
Peng Kang
3DGS
89
0
0
07 Mar 2025
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
Cengiz Pehlevan
55
2
0
06 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
59
13
0
26 Sep 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
43
3
0
22 Sep 2024
Can Optimization Trajectories Explain Multi-Task Transfer?
David Mueller
Mark Dredze
Matthew Wiesner
63
1
0
26 Aug 2024
Normalization and effective learning rates in reinforcement learning
Clare Lyle
Zeyu Zheng
Khimya Khetarpal
James Martens
H. V. Hasselt
Razvan Pascanu
Will Dabney
26
7
0
01 Jul 2024
When does compositional structure yield compositional generalization? A kernel theory
Samuel Lippl
Kim Stachenfeld
NAI
CoGe
75
6
0
26 May 2024
Weak Correlations as the Underlying Principle for Linearization of Gradient-Based Learning Systems
Ori Shem-Ur
Yaron Oz
24
0
0
08 Jan 2024
Rethinking Adversarial Training with Neural Tangent Kernel
Guanlin Li
Han Qiu
Shangwei Guo
Jiwei Li
Tianwei Zhang
AAML
31
0
0
04 Dec 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
25
7
0
15 Jul 2023
Sparse Weight Averaging with Multiple Particles for Iterative Magnitude Pruning
Moonseok Choi
Hyungi Lee
G. Nam
Juho Lee
42
2
0
24 May 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
42
14
0
23 May 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
53
113
0
22 May 2023
Understanding the Initial Condensation of Convolutional Neural Networks
Zhangchen Zhou
Hanxu Zhou
Yuqing Li
Zhi-Qin John Xu
MLT
AI4CE
31
5
0
17 May 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
42
30
0
27 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
35
14
0
03 Mar 2023
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
36
42
0
13 Feb 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
52
5
0
02 Feb 2023
Editing Models with Task Arithmetic
Gabriel Ilharco
Marco Tulio Ribeiro
Mitchell Wortsman
Suchin Gururangan
Ludwig Schmidt
Hannaneh Hajishirzi
Ali Farhadi
KELM
MoMe
MU
77
443
0
08 Dec 2022
Nonlinear Advantage: Trained Networks Might Not Be As Complex as You Think
Christian H. X. Ali Mehmeti-Göpel
Jan Disselhoff
18
5
0
30 Nov 2022
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
45
14
0
11 Nov 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
44
13
0
21 Oct 2022
lo-fi: distributed fine-tuning without communication
Mitchell Wortsman
Suchin Gururangan
Shen Li
Ali Farhadi
Ludwig Schmidt
Michael G. Rabbat
Ari S. Morcos
36
24
0
19 Oct 2022
Data-Efficient Augmentation for Training Neural Networks
Tian Yu Liu
Baharan Mirzasoleiman
32
7
0
15 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
55
18
0
11 Oct 2022
Uncertainty-Aware Meta-Learning for Multimodal Task Distributions
Cesar Almecija
Apoorva Sharma
Navid Azizan
OOD
UQCV
26
3
0
04 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
46
4
0
01 Oct 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
49
22
0
22 Sep 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
34
5
0
19 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
66
6
0
17 Sep 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
29
3
0
04 Sep 2022
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
40
18
0
24 Jul 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
32
34
0
21 Jul 2022
Limitations of the NTK for Understanding Generalization in Deep Learning
Nikhil Vyas
Yamini Bansal
Preetum Nakkiran
32
32
0
20 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
30
54
0
17 Jun 2022
Learning Dynamics and Generalization in Reinforcement Learning
Clare Lyle
Mark Rowland
Will Dabney
Marta Z. Kwiatkowska
Y. Gal
OOD
OffRL
30
12
0
05 Jun 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
47
121
0
03 May 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
42
12
0
28 Mar 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
35
29
0
15 Feb 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
40
51
0
31 Dec 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
Cengiz Pehlevan
MLT
30
75
0
29 Oct 2021
Deep Active Learning by Leveraging Training Dynamics
Haonan Wang
Wei Huang
Ziwei Wu
A. Margenot
Yangqiu Song
Jingrui He
AI4CE
31
33
0
16 Oct 2021
Improved architectures and training algorithms for deep operator networks
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
52
105
0
04 Oct 2021
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
71
697
0
04 Sep 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
29
44
0
12 Jun 2021
1
2
Next