ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14876
  4. Cited By
Fighting Copycat Agents in Behavioral Cloning from Observation Histories

Fighting Copycat Agents in Behavioral Cloning from Observation Histories

28 October 2020
Chuan Wen
Jierui Lin
Trevor Darrell
Dinesh Jayaraman
Yang Gao
ArXivPDFHTML

Papers citing "Fighting Copycat Agents in Behavioral Cloning from Observation Histories"

30 / 30 papers shown
Title
A Unifying Framework for Causal Imitation Learning with Hidden Confounders
A Unifying Framework for Causal Imitation Learning with Hidden Confounders
Daqian Shao
Thomas Kleine Buening
Marta Z. Kwiatkowska
CML
86
1
0
11 Feb 2025
Learning Manipulation Skills through Robot Chain-of-Thought with Sparse Failure Guidance
Learning Manipulation Skills through Robot Chain-of-Thought with Sparse Failure Guidance
Kaifeng Zhang
Zhao-Heng Yin
Weirui Ye
Yang Gao
85
4
0
22 May 2024
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
198
2,044
0
16 Apr 2020
Learning Task-Driven Control Policies via Information Bottlenecks
Learning Task-Driven Control Policies via Information Bottlenecks
Vincent Pacelli
Anirudha Majumdar
50
25
0
04 Feb 2020
Recurrent Independent Mechanisms
Recurrent Independent Mechanisms
Anirudh Goyal
Alex Lamb
Jordan Hoffmann
Shagun Sodhani
Sergey Levine
Yoshua Bengio
Bernhard Schölkopf
76
337
0
24 Sep 2019
Monocular Plan View Networks for Autonomous Driving
Monocular Plan View Networks for Autonomous Driving
Dequan Wang
Coline Devin
Qi-Zhi Cai
Philipp Krahenbuhl
Trevor Darrell
59
81
0
16 May 2019
Exploring the Limitations of Behavior Cloning for Autonomous Driving
Exploring the Limitations of Behavior Cloning for Autonomous Driving
Felipe Codevilla
Eder Santana
Antonio M. López
Adrien Gaidon
46
542
0
18 Apr 2019
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
  Context Variables
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
78
653
0
19 Mar 2019
Non-Monotonic Sequential Text Generation
Non-Monotonic Sequential Text Generation
Sean Welleck
Kianté Brantley
Hal Daumé
Kyunghyun Cho
63
130
0
05 Feb 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
93
334
0
30 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
529
10,527
0
12 Dec 2018
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing
  the Worst
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
Mayank Bansal
A. Krizhevsky
A. Ogale
OOD
76
738
0
07 Dec 2018
An Algorithmic Perspective on Imitation Learning
An Algorithmic Perspective on Imitation Learning
Takayuki Osa
Joni Pajarinen
Gerhard Neumann
J. Andrew Bagnell
Pieter Abbeel
Jan Peters
83
840
0
16 Nov 2018
Learning Independent Causal Mechanisms
Learning Independent Causal Mechanisms
Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
CML
OOD
DRL
52
182
0
04 Dec 2017
DART: Noise Injection for Robust Imitation Learning
DART: Noise Injection for Robust Imitation Learning
Michael Laskey
Jonathan Lee
Roy Fox
Anca Dragan
Ken Goldberg
166
244
0
27 Mar 2017
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential
  Prediction
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction
Wen Sun
Arun Venkatraman
Geoffrey J. Gordon
Byron Boots
J. Andrew Bagnell
118
235
0
03 Mar 2017
Adversarial Discriminative Domain Adaptation
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GAN
OOD
257
4,653
0
17 Feb 2017
Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
79
2,106
0
17 Jan 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
98
1,714
0
01 Dec 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
76
1,015
0
09 Nov 2016
Amortised MAP Inference for Image Super-resolution
Amortised MAP Inference for Image Super-resolution
C. Sønderby
Jose Caballero
Lucas Theis
Wenzhe Shi
Ferenc Huszár
92
435
0
14 Oct 2016
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
131
3,098
0
10 Jun 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
73
4,163
0
25 Apr 2016
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
243
13,989
0
19 Nov 2015
Deep Recurrent Q-Learning for Partially Observable MDPs
Deep Recurrent Q-Learning for Partially Observable MDPs
Matthew J. Hausknecht
Peter Stone
104
1,677
0
23 Jul 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
265
6,755
0
19 Feb 2015
Deep Domain Confusion: Maximizing for Domain Invariance
Deep Domain Confusion: Maximizing for Domain Invariance
Eric Tzeng
Judy Hoffman
Ning Zhang
Kate Saenko
Trevor Darrell
OOD
165
2,598
0
10 Dec 2014
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
231
6,012
0
26 Sep 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
412
16,947
0
20 Dec 2013
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
194
3,211
0
02 Nov 2010
1