ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.14785
  4. Cited By
Designing Interpretable Approximations to Deep Reinforcement Learning

Designing Interpretable Approximations to Deep Reinforcement Learning

28 October 2020
Nathan Dahlin
K. C. Kalagarla
Nikhil Naik
Rahul Jain
Pierluigi Nuzzo
ArXivPDFHTML

Papers citing "Designing Interpretable Approximations to Deep Reinforcement Learning"

3 / 3 papers shown
Title
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
24
7
0
06 Nov 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for
  nucleus classification, localization and segmentation
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation
M. Amgad
Lamees A. Atteya
Hagar Hussein
K. Mohammed
Ehab Hafiz
...
Critical Care
David Manthey
Atlanta
D. Neurology
Lurie Cancer Center
44
74
0
18 Feb 2021
1