Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.14785
Cited By
Designing Interpretable Approximations to Deep Reinforcement Learning
28 October 2020
Nathan Dahlin
K. C. Kalagarla
Nikhil Naik
Rahul Jain
Pierluigi Nuzzo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Designing Interpretable Approximations to Deep Reinforcement Learning"
3 / 3 papers shown
Title
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
24
7
0
06 Nov 2022
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
655
0
20 Mar 2021
NuCLS: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation
M. Amgad
Lamees A. Atteya
Hagar Hussein
K. Mohammed
Ehab Hafiz
...
Critical Care
David Manthey
Atlanta
D. Neurology
Lurie Cancer Center
44
74
0
18 Feb 2021
1