Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.14075
Cited By
Neural Network Approximation: Three Hidden Layers Are Enough
25 October 2020
Zuowei Shen
Haizhao Yang
Shijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network Approximation: Three Hidden Layers Are Enough"
50 / 51 papers shown
Title
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
Yuling Jiao
Yanming Lai
Yang Wang
Bokai Yan
39
0
0
18 Apr 2025
Unveiling the Potential of Superexpressive Networks in Implicit Neural Representations
Uvini Balasuriya Mudiyanselage
Woojin Cho
Minju Jo
Noseong Park
Kookjin Lee
47
0
0
27 Mar 2025
From Equations to Insights: Unraveling Symbolic Structures in PDEs with LLMs
Rohan Bhatnagar
Ling Liang
Krish Patel
Haizhao Yang
36
0
0
13 Mar 2025
Curse of Dimensionality in Neural Network Optimization
Sanghoon Na
Haizhao Yang
56
0
0
07 Feb 2025
Solving High-Dimensional Partial Integral Differential Equations: The Finite Expression Method
Gareth Hardwick
Senwei Liang
Haizhao Yang
31
1
0
01 Oct 2024
Don't Fear Peculiar Activation Functions: EUAF and Beyond
Qianchao Wang
Shijun Zhang
Dong Zeng
Zhaoheng Xie
Hengtao Guo
Feng-Lei Fan
Tieyong Zeng
39
3
0
12 Jul 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
50
13
0
13 Apr 2024
Operator Learning: Algorithms and Analysis
Nikola B. Kovachki
S. Lanthaler
Andrew M. Stuart
46
22
0
24 Feb 2024
Deep Neural Networks and Finite Elements of Any Order on Arbitrary Dimensions
Juncai He
Jinchao Xu
27
7
0
21 Dec 2023
Approximating Langevin Monte Carlo with ResNet-like Neural Network architectures
Charles Miranda
Janina Enrica Schutte
David Sommer
Martin Eigel
32
3
0
06 Nov 2023
On the Kolmogorov neural networks
Aysu Ismayilova
V. Ismailov
31
17
0
31 Oct 2023
Deep ReLU networks and high-order finite element methods II: Chebyshev emulation
J. Opschoor
Christoph Schwab
34
2
0
11 Oct 2023
Solving Two-Player General-Sum Games Between Swarms
Mukesh Ghimire
Lei Zhang
Wenlong Zhang
Yi Ren
Zhenni Xu
26
1
0
02 Oct 2023
Noncompact uniform universal approximation
T. V. Nuland
22
5
0
07 Aug 2023
Deep Operator Network Approximation Rates for Lipschitz Operators
Ch. Schwab
A. Stein
Jakob Zech
33
9
0
19 Jul 2023
Why Shallow Networks Struggle with Approximating and Learning High Frequency: A Numerical Study
Shijun Zhang
Hongkai Zhao
Yimin Zhong
Haomin Zhou
21
7
0
29 Jun 2023
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Linus Bleistein
Agathe Guilloux
40
1
0
26 May 2023
Interpretability of Machine Learning: Recent Advances and Future Prospects
Lei Gao
L. Guan
AAML
43
31
0
30 Apr 2023
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
33
5
0
21 Mar 2023
On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network
Shijun Zhang
Jianfeng Lu
Hongkai Zhao
CoGe
30
4
0
29 Jan 2023
Inference on Time Series Nonparametric Conditional Moment Restrictions Using General Sieves
Xiaohong Chen
Yuan Liao
Weichen Wang
17
0
0
31 Dec 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
21
6
0
18 Aug 2022
Expressive power of binary and ternary neural networks
A. Beknazaryan
MQ
13
0
0
27 Jun 2022
Concentration inequalities and optimal number of layers for stochastic deep neural networks
Michele Caprio
Sayan Mukherjee
BDL
19
1
0
22 Jun 2022
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
Senwei Liang
Haizhao Yang
31
18
0
21 Jun 2022
Simultaneous approximation of a smooth function and its derivatives by deep neural networks with piecewise-polynomial activations
Denis Belomestny
A. Naumov
Nikita Puchkin
S. Samsonov
11
20
0
20 Jun 2022
Data-Efficient Modeling for Precise Power Consumption Estimation of Quadrotor Operations Using Ensemble Learning
Wei Dai
Mingcheng Zhang
K. H. Low
17
2
0
23 May 2022
Neural Network Architecture Beyond Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
3DV
MDE
33
13
0
19 May 2022
A scalable deep learning approach for solving high-dimensional dynamic optimal transport
Wei Wan
Yuejin Zhang
Chenglong Bao
Bin Dong
Zuoqiang Shi
19
5
0
16 May 2022
KASAM: Spline Additive Models for Function Approximation
H. V. Deventer
P. V. Rensburg
Anna Sergeevna Bosman
KELM
CLL
14
3
0
12 May 2022
A Note on Machine Learning Approach for Computational Imaging
Bin Dong
26
0
0
24 Feb 2022
Stochastic Causal Programming for Bounding Treatment Effects
Kirtan Padh
Jakob Zeitler
David S. Watson
Matt J. Kusner
Ricardo M. A. Silva
Niki Kilbertus
CML
28
26
0
22 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
49
20
0
31 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
18
9
0
15 Nov 2021
Efficient Estimation in NPIV Models: A Comparison of Various Neural Networks-Based Estimators
Jiafeng Chen
Xiaohong Chen
E. Tamer
17
10
0
13 Oct 2021
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
53
26
0
07 Oct 2021
Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function Approximation
Nathan Gaby
Fumin Zhang
X. Ye
PINN
37
39
0
27 Sep 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
59
8
0
23 Sep 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
53
36
0
06 Jul 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
18
8
0
21 Jun 2021
Solving PDEs on Unknown Manifolds with Machine Learning
Senwei Liang
Shixiao W. Jiang
J. Harlim
Haizhao Yang
AI4CE
39
16
0
12 Jun 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
Deep Neural Networks with ReLU-Sine-Exponential Activations Break Curse of Dimensionality in Approximation on Hölder Class
Yuling Jiao
Yanming Lai
Xiliang Lu
Fengru Wang
J. Yang
Yuanyuan Yang
13
3
0
28 Feb 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
101
115
0
28 Feb 2021
Elementary superexpressive activations
Dmitry Yarotsky
16
35
0
22 Feb 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
Friedrichs Learning: Weak Solutions of Partial Differential Equations via Deep Learning
Fan Chen
J. Huang
Chunmei Wang
Haizhao Yang
25
30
0
15 Dec 2020
A three layer neural network can represent any multivariate function
V. Ismailov
15
15
0
05 Dec 2020
The Kolmogorov-Arnold representation theorem revisited
Johannes Schmidt-Hieber
30
125
0
31 Jul 2020
1
2
Next