ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.07261
32
2

Deep ReLU networks and high-order finite element methods II: Chebyshev emulation

11 October 2023
J. Opschoor
Christoph Schwab
ArXivPDFHTML
Abstract

We show expression rates and stability in Sobolev norms of deep feedforward ReLU neural networks (NNs) in terms of the number of parameters defining the NN for continuous, piecewise polynomial functions, on arbitrary, finite partitions T\mathcal{T}T of a bounded interval (a,b)(a,b)(a,b). Novel constructions of ReLU NN surrogates encoding function approximations in terms of Chebyshev polynomial expansion coefficients are developed which require fewer neurons than previous constructions. Chebyshev coefficients can be computed easily from the values of the function in the Clenshaw--Curtis points using the inverse fast Fourier transform. Bounds on expression rates and stability are obtained that are superior to those of constructions based on ReLU NN emulations of monomials as considered in [Opschoor, Petersen and Schwab, 2020] and [Montanelli, Yang and Du, 2021]. All emulation bounds are explicit in terms of the (arbitrary) partition of the interval, the target emulation accuracy and the polynomial degree in each element of the partition. ReLU NN emulation error estimates are provided for various classes of functions and norms, commonly encountered in numerical analysis. In particular, we show exponential ReLU emulation rate bounds for analytic functions with point singularities and develop an interface between Chebfun approximations and constructive ReLU NN emulations.

View on arXiv
Comments on this paper