ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.11820
  4. Cited By
Posterior Re-calibration for Imbalanced Datasets

Posterior Re-calibration for Imbalanced Datasets

22 October 2020
Junjiao Tian
Yen-Cheng Liu
Nathan Glaser
Yen-Chang Hsu
Z. Kira
ArXivPDFHTML

Papers citing "Posterior Re-calibration for Imbalanced Datasets"

18 / 18 papers shown
Title
Enhancing Features in Long-tailed Data Using Large Vision Model
Enhancing Features in Long-tailed Data Using Large Vision Model
Pengxiao Han
Changkun Ye
Jinguang Tong
Cuicui Jiang
Jie Hong
Li Fang
Xuesong Li
VLM
208
0
0
15 Apr 2025
Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Guangkun Nie
Gongzheng Tang
Shenda Hong
116
0
0
20 Nov 2024
Taming the Long Tail in Human Mobility Prediction
Taming the Long Tail in Human Mobility Prediction
Xiaohang Xu
Renhe Jiang
Chuang Yang
Z. Fan
Kaoru Sezaki
109
3
0
19 Oct 2024
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Divin Yan
Gengchen Wei
Chen Yang
Shengzhong Zhang
Zengfeng Huang
AI4CE
96
12
0
28 Oct 2023
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed
  Visual Recognition
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
Boyan Zhou
Quan Cui
Xiu-Shen Wei
Zhao-Min Chen
288
800
0
05 Dec 2019
UNO: Uncertainty-aware Noisy-Or Multimodal Fusion for Unanticipated
  Input Degradation
UNO: Uncertainty-aware Noisy-Or Multimodal Fusion for Unanticipated Input Degradation
Junjiao Tian
W. Cheung
Nathan Glaser
Yen-Cheng Liu
Z. Kira
52
26
0
06 Nov 2019
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
116
1,602
0
18 Jun 2019
Application of Decision Rules for Handling Class Imbalance in Semantic
  Segmentation
Application of Decision Rules for Handling Class Imbalance in Semantic Segmentation
Robin Shing Moon Chan
Matthias Rottmann
Fabian Hüger
Peter Schlicht
Hanno Gottschalk
SSeg
43
41
0
24 Jan 2019
Class-Balanced Loss Based on Effective Number of Samples
Class-Balanced Loss Based on Effective Number of Samples
Huayu Chen
Menglin Jia
Nayeon Lee
Yang Song
Serge J. Belongie
193
2,279
0
16 Jan 2019
A systematic study of the class imbalance problem in convolutional
  neural networks
A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda
A. Maki
Maciej A. Mazurowski
211
2,367
0
15 Oct 2017
Focal Loss for Dense Object Detection
Focal Loss for Dense Object Detection
Nayeon Lee
Priya Goyal
Ross B. Girshick
Kaiming He
Piotr Dollár
ObjD
112
2,996
0
07 Aug 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,827
0
14 Jun 2017
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
242
18,232
0
02 Jun 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
878
27,358
0
02 Dec 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,798
0
02 Nov 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
499
62,270
0
04 Jun 2015
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLM
MDE
207
2,679
0
18 Nov 2014
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
367
25,642
0
09 Jun 2011
1