ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09990
  4. Cited By
The Open Catalyst 2020 (OC20) Dataset and Community Challenges

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

20 October 2020
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
M. Rivière
Kevin Tran
Javier Heras-Domingo
Caleb Ho
Weihua Hu
Aini Palizhati
Anuroop Sriram
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
ArXivPDFHTML

Papers citing "The Open Catalyst 2020 (OC20) Dataset and Community Challenges"

50 / 56 papers shown
Title
Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
Transition States Energies from Machine Learning: An Application to Reverse Water-Gas Shift on Single-Atom Alloys
Raffaele Cheula
Mie Andersen
51
0
0
01 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
84
0
0
28 Apr 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
C. Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
35
0
0
12 Feb 2025
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
192
11
0
05 Feb 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
91
7
0
16 Dec 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
32
16
0
16 Oct 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of
  Freedom with Multi-Task Learning
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
46
0
0
05 Sep 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
57
0
0
23 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
48
5
0
29 May 2024
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
85
1
0
20 May 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular
  Graph Learning with Triplet Graph Transformers
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
26
5
0
07 Feb 2024
Reducing the Cost of Quantum Chemical Data By Backpropagating Through
  Density Functional Theory
Reducing the Cost of Quantum Chemical Data By Backpropagating Through Density Functional Theory
Alexander Mathiasen
Hatem Helal
Paul Balanca
Adam Krzywaniak
Ali Parviz
Frederik Hvilshoj
Bla.zej Banaszewski
Carlo Luschi
Andrew William Fitzgibbon
32
3
0
06 Feb 2024
Holistic chemical evaluation reveals pitfalls in reaction prediction
  models
Holistic chemical evaluation reveals pitfalls in reaction prediction models
Victor Sabanza Gil
Andres M Bran
Malte Franke
Remi Schlama
J. Luterbacher
Philippe Schwaller
ELM
25
1
0
14 Dec 2023
Unified machine learning tasks and datasets for enhancing renewable
  energy
Unified machine learning tasks and datasets for enhancing renewable energy
Arsam Aryandoust
Thomas Rigoni
Francesco di Stefano
Anthony Patt
35
0
0
12 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
22
32
0
25 Oct 2023
Latent Conservative Objective Models for Data-Driven Crystal Structure
  Prediction
Latent Conservative Objective Models for Data-Driven Crystal Structure Prediction
Han Qi
Xinyang Geng
Stefano Rando
Iku Ohama
Aviral Kumar
Sergey Levine
DiffM
42
2
0
16 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed
  energy predictions
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
30
0
0
10 Oct 2023
Materials Informatics Transformer: A Language Model for Interpretable
  Materials Properties Prediction
Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction
Hongshuo Huang
Rishikesh Magar
Chang Xu
A. Farimani
AI4CE
32
4
0
30 Aug 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
28
33
0
28 Aug 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
13
20
0
15 Jun 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with
  Deep Learning
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
19
40
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
20
13
0
02 Jun 2023
Language models can generate molecules, materials, and protein binding
  sites directly in three dimensions as XYZ, CIF, and PDB files
Language models can generate molecules, materials, and protein binding sites directly in three dimensions as XYZ, CIF, and PDB files
Daniel Flam-Shepherd
Alán Aspuru-Guzik
22
51
0
09 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
29
53
0
28 Apr 2023
High Accuracy Uncertainty-Aware Interatomic Force Modeling with
  Equivariant Bayesian Neural Networks
High Accuracy Uncertainty-Aware Interatomic Force Modeling with Equivariant Bayesian Neural Networks
Tim Rensmeyer
Benjamin Craig
D. Kramer
Oliver Niggemann
BDL
36
3
0
05 Apr 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry
  via positional denoising
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
28
6
0
28 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
26
10
0
27 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
26
79
0
07 Feb 2023
Learning a Fourier Transform for Linear Relative Positional Encodings in
  Transformers
Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers
K. Choromanski
Shanda Li
Valerii Likhosherstov
Kumar Avinava Dubey
Shengjie Luo
Di He
Yiming Yang
Tamás Sarlós
Thomas Weingarten
Adrian Weller
23
8
0
03 Feb 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
21
44
0
29 Nov 2022
Extreme Acceleration of Graph Neural Network-based Prediction Models for
  Quantum Chemistry
Extreme Acceleration of Graph Neural Network-based Prediction Models for Quantum Chemistry
Hatem Helal
J. Firoz
Jenna A. Bilbrey
M. M. Krell
Tom Murray
Ang Li
S. Xantheas
Sutanay Choudhury
GNN
31
5
0
25 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
42
23
0
15 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in
  Materials Science
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
36
19
0
31 Oct 2022
Injecting Domain Knowledge from Empirical Interatomic Potentials to
  Neural Networks for Predicting Material Properties
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
30
7
0
14 Oct 2022
AutoML for Climate Change: A Call to Action
AutoML for Climate Change: A Call to Action
Renbo Tu
Nicholas Roberts
Vishak Prasad
Sibasis Nayak
P. Jain
Frederic Sala
Ganesh Ramakrishnan
Ameet Talwalkar
W. Neiswanger
Colin White
25
6
0
07 Oct 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Artificial Intelligence in Material Engineering: A review on
  applications of AI in Material Engineering
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
31
19
0
15 Sep 2022
Active Learning Exploration of Transition Metal Complexes to Discover
  Method-Insensitive and Synthetically Accessible Chromophores
Active Learning Exploration of Transition Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores
Chenru Duan
Aditya Nandy
Gianmarco G. Terrones
D. Kastner
Heather J. Kulik
28
9
0
10 Aug 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
39
370
0
05 Aug 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
Graph-level Neural Networks: Current Progress and Future Directions
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Jia Wu
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
38
0
0
31 May 2022
Exploiting Ligand Additivity for Transferable Machine Learning of
  Multireference Character Across Known Transition Metal Complex Ligands
Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character Across Known Transition Metal Complex Ligands
Chenru Duan
A. Ladera
Julian C.-L. Liu
Michael G. Taylor
I. Ariyarathna
Heather J. Kulik
11
10
0
05 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
31
65
0
06 Apr 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
25
27
0
18 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
33
65
0
09 Mar 2022
Non-equilibrium molecular geometries in graph neural networks
Non-equilibrium molecular geometries in graph neural networks
Ali Raza
E. Henle
Xiaoli Z. Fern
AI4CE
15
0
0
07 Mar 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
15
53
0
06 Dec 2021
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
12
Next