Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2010.09929
Cited By
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
19 October 2020
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians"
36 / 36 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
75
0
0
03 Feb 2025
Learning discrete distributions: user vs item-level privacy
Yuhan Liu
A. Suresh
Felix X. Yu
Sanjiv Kumar
Michael Riley
FedML
62
53
0
27 Jul 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
51
116
0
11 Jun 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
49
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
47
58
0
14 Apr 2020
Locally Private Hypothesis Selection
Sivakanth Gopi
Gautam Kamath
Janardhan Kulkarni
Aleksandar Nikolov
Zhiwei Steven Wu
Huanyu Zhang
43
26
0
21 Feb 2020
Private Mean Estimation of Heavy-Tailed Distributions
Gautam Kamath
Vikrant Singhal
Jonathan R. Ullman
52
99
0
21 Feb 2020
Privately Learning Markov Random Fields
Huanyu Zhang
Gautam Kamath
Janardhan Kulkarni
Zhiwei Steven Wu
58
25
0
21 Feb 2020
Differentially Private Confidence Intervals
Wenxin Du
C. Foot
Monica Moniot
Andrew Bray
Adam Groce
34
46
0
07 Jan 2020
On the Sample Complexity of Learning Sum-Product Networks
Ishaq Aden-Ali
H. Ashtiani
TPM
20
2
0
05 Dec 2019
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians
Gautam Kamath
Or Sheffet
Vikrant Singhal
Jonathan R. Ullman
FedML
40
48
0
09 Sep 2019
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
59
74
0
06 Jun 2019
Private Hypothesis Selection
Mark Bun
Gautam Kamath
Thomas Steinke
Zhiwei Steven Wu
32
90
0
30 May 2019
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
T. Tony Cai
Yichen Wang
Linjun Zhang
54
165
0
12 Feb 2019
The Optimal Approximation Factor in Density Estimation
Olivier Bousquet
D. Kane
Shay Moran
49
19
0
10 Feb 2019
The total variation distance between high-dimensional Gaussians with the same mean
Luc Devroye
Abbas Mehrabian
Tommy Reddad
45
225
0
19 Oct 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
81
151
0
01 May 2018
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
40
676
0
05 Dec 2017
Finite Sample Differentially Private Confidence Intervals
Vishesh Karwa
Salil P. Vadhan
47
193
0
10 Nov 2017
Sample-Efficient Learning of Mixtures
H. Ashtiani
Shai Ben-David
Abbas Mehrabian
33
25
0
06 Jun 2017
Tight Lower Bounds for Differentially Private Selection
Thomas Steinke
Jonathan R. Ullman
59
73
0
10 Apr 2017
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
203
4,075
0
18 Oct 2016
Concentrated Differential Privacy: Simplifications, Extensions, and Lower Bounds
Mark Bun
Thomas Steinke
55
823
0
06 May 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
64
511
0
21 Apr 2016
Locating a Small Cluster Privately
Kobbi Nissim
Uri Stemmer
Salil P. Vadhan
19
53
0
19 Apr 2016
Make Up Your Mind: The Price of Online Queries in Differential Privacy
Mark Bun
Thomas Steinke
Jonathan R. Ullman
49
58
0
15 Apr 2016
Concentrated Differential Privacy
Cynthia Dwork
G. Rothblum
50
446
0
06 Mar 2016
Between Pure and Approximate Differential Privacy
Thomas Steinke
Jonathan R. Ullman
FedML
55
159
0
24 Jan 2015
Interactive Fingerprinting Codes and the Hardness of Preventing False Discovery
Thomas Steinke
Jonathan R. Ullman
57
108
0
05 Oct 2014
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
Ulfar Erlingsson
Vasyl Pihur
Aleksandra Korolova
59
1,977
0
25 Jul 2014
Near-optimal-sample estimators for spherical Gaussian mixtures
A. Suresh
Ashkan Jafarpour
A. Orlitsky
Jayadev Acharya
64
92
0
19 Feb 2014
Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians
C. Daskalakis
Gautam Kamath
134
92
0
04 Dec 2013
Fingerprinting Codes and the Price of Approximate Differential Privacy
Mark Bun
Jonathan R. Ullman
Salil P. Vadhan
FedML
45
211
0
13 Nov 2013
Learning Poisson Binomial Distributions
C. Daskalakis
Ilias Diakonikolas
Rocco A. Servedio
SSL
113
120
0
13 Jul 2011
On the Geometry of Differential Privacy
Moritz Hardt
Kunal Talwar
92
462
0
21 Jul 2009
Density estimation in linear time
Satyaki Mahalanabis
Daniel Stefankovic
78
23
0
18 Dec 2007
1