ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09865
  4. Cited By
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks

Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks

19 October 2020
Theodoros Tsiligkaridis
    UQCV
ArXivPDFHTML

Papers citing "Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks"

21 / 21 papers shown
Title
Addressing Failure Prediction by Learning Model Confidence
Addressing Failure Prediction by Learning Model Confidence
Charles Corbière
Nicolas Thome
Avner Bar-Hen
Matthieu Cord
P. Pérez
94
286
0
01 Oct 2019
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty
  and Adversarial Robustness
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
A. Malinin
Mark Gales
UQCV
AAML
43
174
0
31 May 2019
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object
  Detection
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
Golnaz Ghiasi
Nayeon Lee
Ruoming Pang
Quoc V. Le
ObjD
57
1,389
0
16 Apr 2019
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
131
969
0
05 Jun 2018
To Trust Or Not To Trust A Classifier
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
118
469
0
30 May 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
199
5,774
0
14 Jun 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
127
198
0
08 Mar 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
131
456
0
06 Mar 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
94
825
0
19 Jan 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
103
3,420
0
07 Oct 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
147
2,371
0
21 Jun 2016
Deep Learning for Identifying Metastatic Breast Cancer
Deep Learning for Identifying Metastatic Breast Cancer
Dayong Wang
A. Khosla
Rishab Gargeya
H. Irshad
Andrew H. Beck
MedIm
49
940
0
18 Jun 2016
SSD: Single Shot MultiBox Detector
SSD: Single Shot MultiBox Detector
Wen Liu
Dragomir Anguelov
D. Erhan
Christian Szegedy
Scott E. Reed
Cheng-Yang Fu
Alexander C. Berg
ObjD
BDL
146
29,646
0
08 Dec 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
159
1,500
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
476
9,233
0
06 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
412
61,900
0
04 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
117
1,878
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
200
18,534
0
06 Feb 2015
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
127
3,261
0
05 Dec 2014
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
74
906
0
17 Feb 2014
1