ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.09435
  4. Cited By
An Introduction to Electrocatalyst Design using Machine Learning for
  Renewable Energy Storage

An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage

14 October 2020
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
Caleb Ho
Weihua Hu
Thibaut Lavril
Aini Palizhati
M. Rivière
Muhammed Shuaibi
Anuroop Sriram
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
ArXivPDFHTML

Papers citing "An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage"

16 / 16 papers shown
Title
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
38
16
0
16 Oct 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
47
4
0
07 May 2024
Unified machine learning tasks and datasets for enhancing renewable
  energy
Unified machine learning tasks and datasets for enhancing renewable energy
Arsam Aryandoust
Thomas Rigoni
Francesco di Stefano
Anthony Patt
40
0
0
12 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed
  energy predictions
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
31
54
0
28 Apr 2023
Computational modeling of semantic change
Computational modeling of semantic change
Nina Tahmasebi
Haim Dubossarsky
31
6
0
13 Apr 2023
Distributional GFlowNets with Quantile Flows
Distributional GFlowNets with Quantile Flows
Dinghuai Zhang
L. Pan
Ricky T. Q. Chen
Aaron Courville
Yoshua Bengio
29
25
0
11 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
31
79
0
07 Feb 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
29
44
0
29 Nov 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
30
27
0
18 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
42
65
0
09 Mar 2022
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
17
229
0
06 Oct 2021
Rotation Invariant Graph Neural Networks using Spin Convolutions
Rotation Invariant Graph Neural Networks using Spin Convolutions
Muhammed Shuaibi
Adeesh Kolluru
Abhishek Das
Aditya Grover
Anuroop Sriram
Zachary W. Ulissi
C. L. Zitnick
AI4CE
27
67
0
17 Jun 2021
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
Weihua Hu
Muhammed Shuaibi
Abhishek Das
Siddharth Goyal
Anuroop Sriram
J. Leskovec
Devi Parikh
C. L. Zitnick
GNN
AI4CE
44
67
0
02 Mar 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
229
503
0
20 Oct 2020
1