ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.08766
  4. Cited By
Tight Lower Complexity Bounds for Strongly Convex Finite-Sum
  Optimization

Tight Lower Complexity Bounds for Strongly Convex Finite-Sum Optimization

17 October 2020
Min Zhang
Yao Shu
Kun He
ArXivPDFHTML

Papers citing "Tight Lower Complexity Bounds for Strongly Convex Finite-Sum Optimization"

2 / 2 papers shown
Title
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
109
0
0
21 Feb 2025
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex
  Optimization
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
44
52
0
12 Feb 2018
1